
Towards Agile Development of
Efficient Deep Learning Operators

Keren Zhou & Philippe Tillet

Deep Neural Networks (DNNs)

2

Computer Vision

https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-
part-2-deep-learning-for-recommender-systems/

https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/ https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-wi
th-deep-learning-28293c162f7a

Image sources

Recommendation Systems

Speech RecognitionNatural Language Processing

Transform DNNs to Low Level Code

3

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

Transform DNNs to Low Level Code

4

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

Transform DNNs to Low Level Code

5

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

__global__

void mm(float *a, float *b,

float *c) {

 float *a_tile;

 float *b_tile;

 …
}

Transform DNNs to Low Level Code

6

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

Device

● GPU

● CPU

● FPGA

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

__global__

void mm(float *a, float *b,

float *c) {

 float *a_tile;

 float *b_tile;

 …
}

Transform DNNs to Low Level Code

7

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

Device

● GPU

● CPU

● FPGA

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

__global__

void mm(float *a, float *b,

float *c) {

 float *a_tile;

 float *b_tile;

 …
}

A Large Number of Tensor Operators

➔ Linear

◆ Fused

● Attention

● Bilinear

◆ Sparse

● SDDMM

● SPMM

➔ Convolution

◆ Depthwise

◆ Dilated

◆ Transposed

➔ Normalization

◆ Batch

◆ Layer

➔ Embedding

Thousands of Operators in PyTorch and TensorFlow

8

➔ Pooling

◆ Max/Min/Avg

◆ Adaptive

➔ Loss

◆ NLL

◆ BCE

➔ Recurrent

◆ LSTM

◆ GRU

➔ Common tensor data types

◆ Float64

◆ Float32

◆ Float32

◆ Float16

◆ BFloat16

◆ Int64

◆ Int32

◆ Int16

◆ Int8

◆ Bool

Various Data Types

9

For performance critical kernels:
#Implementations ≈
#Data types ✕ #Kernels

Handwritten Code

10

➔ Low flexibility

◆ Fine-tune for every shape/data type/algorithm

◆ Employ assembly instructions

◆ …

➔ High performance

◆ Apply sophisticated instruction/operator scheduling

◆ Simplify code

◆ …

Handwritten Code is a Pain

11

➔ For the company

◆ Hard to hire new Machine Learning Engineers

◆ Difficult to maintain libraries

➔ For the researchers

◆ A black box

● They want to understand how kernels work

● They want to fast validate new ideas at scale

Python-like Code

12

➔ High flexibility

◆ Build upon existing operators

◆ No need to recompile

◆ …

➔ Low performance

◆ Not fine-tuned for specific shapes

◆ Intermediate memory movement

◆ …

Can we design a language to achieve both
high performance and flexibility?

Triton
A Programming Model for the Next Generation Deep Learning Systems

13

Programming Models for DNNs

Graph
● XLA/HLO
● TVM/Relay
● TorchDynamo

Kernel
● CUDA
● HIP
● OpenCL

Model
● PyTorch
● TensorFlow
● JAX

14

Programming Models for DNNs

Graph
● XLA/HLO
● TVM/Relay
● TorchDynamo

Kernel

● CUDA
● HIP
● OpenCL
● Triton

Model
● PyTorch
● TensorFlow
● JAX

15

Inefficiencies of PyTorch V1

16

➔ A neural network with individual kernels

◆ Can be slow

◆ Can run out-of-memory

➔ A neural network with graph compiler (TorchScript)

◆ Don’t support custom data-structures

● lists/trees of tensors

● block-sparse tensors

◆ Don’t support custom precision format

◆ Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2 (TorchDynamo)

Triton is Designed to Achieve Both High Flexibility and Performance

17

➔ Flexibility

◆ A small core set of operations (~40 interface functions and ~20 core functions)

◆ Can be composed into almost all existing PyTorch operators (TorchInductor)

◆ SPMD but not SIMT

➔ Performance

◆ JIT generated kernels

◆ Handwritten PTX code

◆ Many passes to combine, simplify, and schedule operations

Triton is a Python-Like Language

18

➔ PyTorch compatible

◆ Inputs can be PyTorch tensors or custom data-structures (e.g., tensors of pointers)

➔ Python syntax

◆ All standard python control flow structure (for/if/while/return) are supported

◆ Python code is lowered to Triton IR

Dev Time VS Performance

19

Dev Time

Performance

TVM

CUDA

Triton

CUTLASS

PyTorch V1

TensorFlow

PyTorch V2

JAX

SASS

Write GPU Kernels Using Triton

20

Terminologies

21

➔ Parallelism

◆ Grid

● One for each kernel (Pre-Hopper)

◆ Block/Warp/Thread

➔ Memory

◆ Global

● Visible to all threads

◆ Shared

● Private to each block

◆ Local

● Private to each thread

CUDA vs Triton

22

CUDA Triton

Memory Global/Shared/Local Automatic

Parallelism Threads/Blocks/Warps Mostly Blocks

Tensor Core Manual Automatic

Vectorization .8/.16/.32/.64/.128 Automatic

Async SIMT Support Limited

Device Function Support Support

Using Triton, you only need to know that a program is
divided into multiple blocks

import triton.language as tl

import triton

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

 # same as torch.arange

 offsets = tl.arange(0, 1024)

 # create 1024 pointers to X, Y, Z

 x_ptrs = x_ptr + offsets

 y_ptrs = y_ptr + offsets

 z_ptrs = z_ptr + offsets

 # load 1024 elements of X, Y, Z

 x = tl.load(x_ptrs)

 y = tl.load(y_ptrs)

 # do computations

 z = x + y

 # write-back 1024 elements of X, Y, Z

 tl.store(z_ptrs, z)

N = 1024

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = (1,)

_add[grid](z, x, y, N)

Vector Addition (Single Block)

23

➔ Z[:] = X[:] + Y[:]
◆ Without boundary check

➔ @triton.jit
◆ Kernel decorator

➔ tl.load() and tl.store()
◆ Load/store values from global to

shared/registers
➔ _add[grid](num_warps=K)

◆ grid = (G,)
● G thread blocks

◆ num_warps = K
◆ K = 4 by default

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

 # same as torch.arange

 offsets = tl.arange(0, 1024)

 offsets += tl.program_id(0)*1024

 # create 1024 pointers to X, Y, Z

 x_ptrs = x_ptr + offsets

 y_ptrs = y_ptr + offsets

 z_ptrs = z_ptr + offsets

 # load 1024 elements of X, Y, Z

 x = tl.load(x_ptrs, mask=offset<N)

 y = tl.load(y_ptrs, mask=offset<N)

 # do computations

 z = x + y

 # write-back 1024 elements of X, Y, Z

 tl.store(z_ptrs, z, mask=offset<N)

N = 192311

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = (triton.cdiv(N, 1024),)

_add[grid](z, x, y, N)

Vector Addition (Boundary Check)

24

➔ Z[:] = X[:] + Y[:]

◆ With boundary check

➔ program_id()

◆ Get the block id

➔ mask

◆ if mask[idx] is false, do not load

the data at address pointer[idx]

➔ triton.cdiv(N, 1024)

◆ (N – 1)//1024 + 1

@triton.autotune(configs=

 [triton.Config('TILE': 128),

 triton.Config('TILE': 256)]

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

 # same as torch.arange

 offsets = tl.arange(0, TILE)

 offsets += tl.program_id(0)*TILE

 # create 128/256 pointers to X, Y, Z

 x_ptrs = x_ptr + offsets

 y_ptrs = y_ptr + offsets

 z_ptrs = z_ptr + offsets

 # load 128/256 elements of X, Y, Z

 x = tl.load(x_ptrs, mask=offset<N)

 y = tl.load(y_ptrs, mask=offset<N)

 # do computations

 z = x + y

 # write-back 128/256 elements of X, Y, Z

 tl.store(z_ptrs, z, mask=offset<N)

N = 192311

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = lambda args: (triton.cdiv(N, args["TILE"]),)

_add[grid](z, x, y, N)

Vector Addition (Custom Tile Size)

25

➔ Z[:] = X[:] + Y[:]

◆ Each block computes TILE

elements

➔ @triton.autotune

◆ Select the best config based on

the execution time

◆ We don’t want to build complex

autotune policies into Triton

Performance of Triton Kernels

26

Element-wise Operators

27

➔ Triton and Torch both achieve peak

bandwidth

➔ Researchers can write fused element-wise

operators easily using Triton

Fused Softmax

28

➔ Triton kernels can keep data on-chip

throughout the entire softmax

➔ PyTorch JIT could in theory do that but in

practice doesn’t

➔ The native PyTorch op is designed to work

for every input shape and is slower in cases

where we care

Matrix Multiplication

29

➔ It takes <25 lines of code to write a Triton

kernel on par with cuBLAS

➔ Arbitrary ops can be “fused” before/after the

GEMM while the data is still on-chip, leading

to large speedups over PyTorch

➔ From the author: Triton is easier to understand and experiment with than CUDA

➔ Triton forward + backward is slightly slower than CUDA forward + backward

Fused Attention (Flash Attention)

30
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2205.14135

Kernl

31

➔ Run PyTorch transformer models several times faster on GPU with a single line of code

➔ The first OSS inference engine written in Triton

https://github.com/ELS-RD/kernl/

Contributing to Triton

32

Goals

33

➔ Make Triton more robust

➔ Using existing infrastructure to avoid creating new wheels

➔ Support more backends

Ecosystem

34

Runtime

Language

Backends

Debugger Profiler

Debugger Status & Roadmap

35

➔ Offloading mode (in progress)

◆ Translate from Triton ops to PyTorch ops

● Facilitate debugging algorithm/numerical issue

➔ Native mode (proposed)

◆ Assemble relevant line mapping information

● Attribute out-of-bound memory accesses from SASS to Triton

● Understand conversions between compiler transformation passes

➔ Call for contributions!

Profiler Status & Roadmap

36

➔ Key objective: Provide low-overhead callbacks and essential kernel information for

external tools

◆ Avoid unnecessary reinvention of existing solutions

● hpctoolkit/tau/nsight

◆ Allow tools to instrument at multiple levels

● Python/TritonIR/TritonGPUIR

◆ Retain Triton’s focuses on the design and optimization of the language

Callback Design

37

● Python
● MLIR/LLVMIR
● PTX/SASS

Source Code

triton.CompiledKernel

● Blocks/Warps
● Shared Memory
● Stages

Launch Info

● Scalars
● Tensors
● Constants

Arguments

kernel_launch_enter(tool_callback, kernel_object)

kernel_launch_exit(tool_callback, kernel_object)

Tool Callbacks

Backend Status

38

Takeaways

39

➔ Triton is designed to achieve both high performance and flexibility

➔ Triton has been used widely in open source projects

➔ Triton supports multiple GPU backends already, with NVIDIA GPUs provide the highest

performance

Additional Topics

40

➔ Triton for HPC?

◆ Rewrite existing algorithms for maintenance and performance

➔ Details about Triton GPU backends?

◆ Encoding/alias/membar/layout conversion

➔ Refactor Triton APIs to address problems on emerging GPUs?

◆ CTA cluster/warp specialization/tensor slicing

➔ Challenges and opportunities of JIT-based code generation?

Thank You
Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER

41

