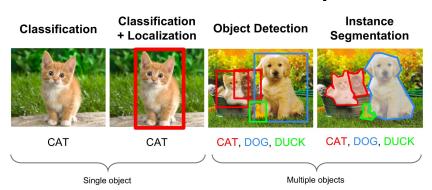


Towards Agile Development of Efficient Deep Learning Operators

Keren Zhou & Philippe Tillet

Deep Neural Networks (DNNs)



Label: did they interact or not?

Neural Network

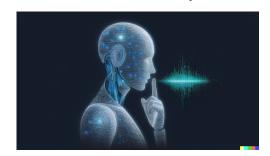
Neural Network

Neural Network

Computer Vision

Natural Language Processing

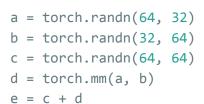
Recommendation Systems

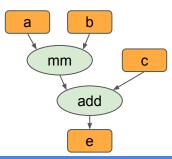


Speech Recognition

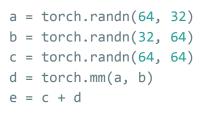
```
a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d
```

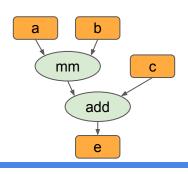
Model	Graph	Kernel	Device
PyTorchTensorFlowJAX	XLA/HLOTVM/RelayPyTorch/fx	CUDAHIPOpenCL	 GPU CPU FPGA





Model Graph Kernel Device	
 PyTorch TensorFlow JAX TorchDynamo CUDA GPU HIP CPU OpenCL FPGA 	J





```
__global__
void mm(float *a, float *b,
float *c) {
    float *a_tile;
    float *b_tile;
    ...
}
```

	PyTorch
	TensorFlow

Model

• JAX • TorchDynamo

Graph

XLA/HLO

• TVM/Relay

• CUDA

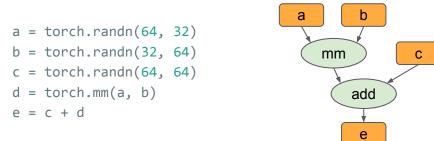
Kernel

- HIP
- OpenCL

• GPU

Device

- CPU
- FPGA



```
__global__
void mm(float *a, float *b,
float *c) {
    float *a_tile;
    float *b_tile;
    ...
}
```


•	Py	То	rch

Model

- TensorFlow
- JAX

W		//	1L(
	_ A	V/ -	
		7/	

Graph

- TVM/Relay
- TorchDynamo

- CUDA
- HIP

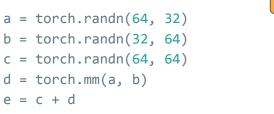
Kernel

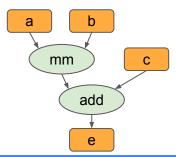
OpenCL

• GPU

Device

- CPU
- FPGA





```
__global__
void mm(float *a, float *b,
float *c) {
    float *a_tile;
    float *b_tile;
    ...
}
```


	Pv1	Forc

Model

- TensorFlow
- JAX

• XLA/HLO

Graph

- TVM/Relay
- TorchDynamo

- CUDA
- HIP

Kernel

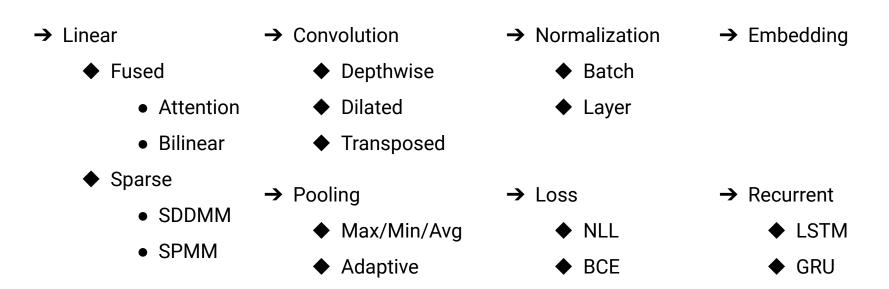
OpenCL

• GPU

Device

- CPU
- FPGA

A Large Number of Tensor Operators



Thousands of Operators in PyTorch and TensorFlow

Various Data Types

- → Common tensor data types
 - ◆ Float64
 - ◆ Float32
 - ◆ Float32
 - ◆ Float16
 - ◆ BFloat16
 - ◆ Int64
 - ◆ Int32
 - ◆ Int16
 - ♦ Int8
 - ◆ Bool

For performance critical kernels: #Implementations ≈ #Data types × #Kernels

Handwritten Code

- → Low flexibility
 - ◆ Fine-tune for every shape/data type/algorithm
 - Employ assembly instructions
 - **\Delta** ..
- → **High** performance
 - Apply sophisticated instruction/operator scheduling
 - ♦ Simplify code
 - **♦** ..

Handwritten Code is a Pain

- → For the company
 - Hard to hire new Machine Learning Engineers
 - Difficult to maintain libraries
- → For the researchers
 - A black box
 - They want to understand how kernels work
 - They want to fast validate new ideas at scale

Python-like Code

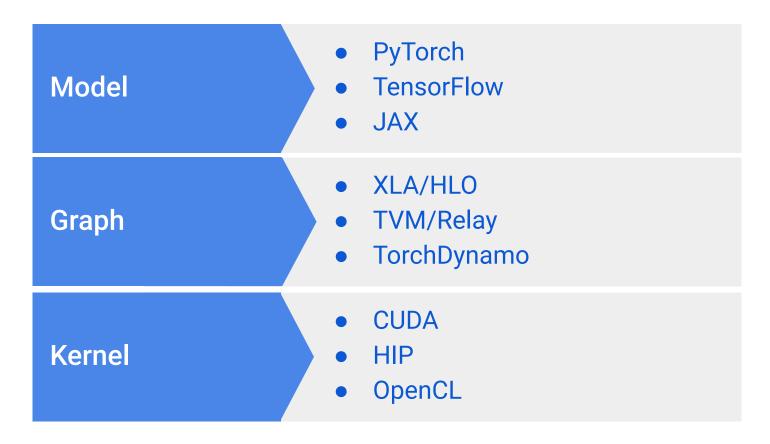
- → **High** flexibility
 - Build upon existing operators
 - ◆ No need to recompile
 - **...**
- → Low performance
 - Not fine-tuned for specific shapes
 - ◆ Intermediate memory movement
 - **♦** ..

Can we design a language to achieve both high performance and flexibility?

Triton

A Programming Model for the Next Generation Deep Learning Systems

Programming Models for DNNs



Programming Models for DNNs

Inefficiencies of PyTorch V1

- → A neural network with individual kernels
 - Can be slow
 - ◆ Can run out-of-memory
- → A neural network with graph compiler (TorchScript)
 - Don't support custom data-structures
 - lists/trees of tensors
 - block-sparse tensors
 - ◆ Don't support custom precision format
 - Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2 (TorchDynamo)

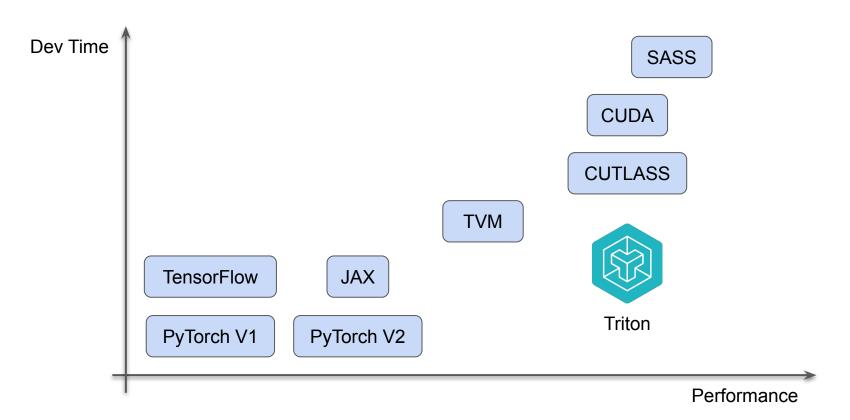
Triton is Designed to Achieve Both High Flexibility and Performance

- → Flexibility
 - ◆ A small core set of operations (~40 interface functions and ~20 core functions)
 - ◆ Can be composed into almost all existing PyTorch operators (TorchInductor)
 - SPMD but not SIMT
- → Performance
 - ◆ JIT generated kernels
 - ◆ Handwritten PTX code
 - Many passes to combine, simplify, and schedule operations

Triton is a Python-Like Language

- → PyTorch compatible
 - ◆ Inputs can be PyTorch tensors or custom data-structures (e.g., tensors of pointers)
- → Python syntax
 - ◆ All standard python control flow structure (for/if/while/return) are supported
 - Python code is lowered to Triton IR

Dev Time VS Performance



Write GPU Kernels Using Triton

Terminologies

- → Parallelism
 - ◆ Grid
 - One for each kernel (Pre-Hopper)
 - ◆ Block/Warp/Thread
- → Memory
 - ◆ Global
 - Visible to all threads
 - ◆ Shared
 - Private to each block
 - ◆ Local
 - Private to each thread

CUDA vs Triton

	CUDA	Triton
Memory	Global/Shared/Local	Automatic
Parallelism	Threads/Blocks/Warps	Mostly Blocks
Tensor Core	Manual	Automatic
Vectorization	.8/.16/.32/.64/.128	Automatic
Async SIMT	Support	Limited
Device Function	Support	Support

Using Triton, you only need to know that a program is divided into multiple blocks

Vector Addition (Single Block)

- → Z[:] = X[:] + Y[:]
 - Without boundary check

```
import triton.language as tl
import triton
N = 1024
x = torch.randn(N, device='cuda')
```

y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')

Vector Addition (Boundary Check)

- → Z[:] = X[:] + Y[:]
 - With boundary check

```
@triton.jit
def add(z ptr, x ptr, y ptr, N):
   # same as torch.arange
   offsets = tl.arange(0, 1024)
   # create 1024 pointers to X, Y, Z
   x ptrs = x ptr + offsets
   y ptrs = y ptr + offsets
   z ptrs = z ptr + offsets
   # load 1024 elements of X, Y, Z
   # do computations
   z = x + y
   # write-back 1024 elements of X, Y, Z
N = 192311
x = torch.randn(N, device='cuda')
v = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (triton.cdiv(N, 1024), )
add[grid](z, x, y, N)
```

Vector Addition (Custom Tile Size)

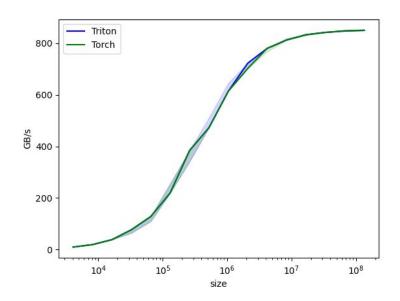
- → Z[:] = X[:] + Y[:]
 - Each block computes TILE elements
- → @triton.autotune
 - Select the best config based on the execution time
 - We don't want to build complex autotune policies into Triton

```
@triton.jit
def add(z ptr, x ptr, y ptr, N):
    # same as torch.arange
    offsets = tl.arange(0, TILE)
    offsets += tl.program id(0)*TILE
    # create 128/256 pointers to X, Y, Z
    x ptrs = x ptr + offsets
    y ptrs = y ptr + offsets
    z ptrs = z ptr + offsets
    # load 128/256 elements of X, Y, Z
    x = tl.load(x ptrs, mask=offset<N)</pre>
    y = tl.load(y ptrs, mask=offset<N)</pre>
    # do computations
    z = x + y
    # write-back 128/256 elements of X, Y, Z
    tl.store(z ptrs, z, mask=offset<N)
N = 192311
x = torch.randn(N, device='cuda')
v = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
```

Performance of Triton Kernels

Element-wise Operators

- → Triton and Torch both achieve peak bandwidth
- → Researchers can write *fused element-wise*operators easily using Triton

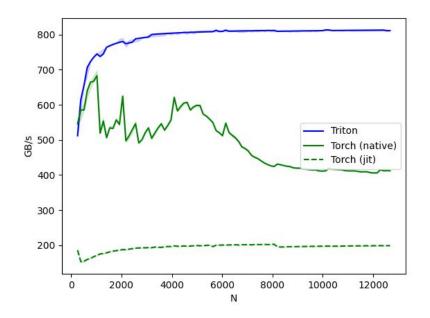


Fused Softmax

- → Triton kernels can keep data on-chip throughout the entire softmax
- → PyTorch JIT could in theory do that but in practice doesn't
- → The native PyTorch op is designed to work

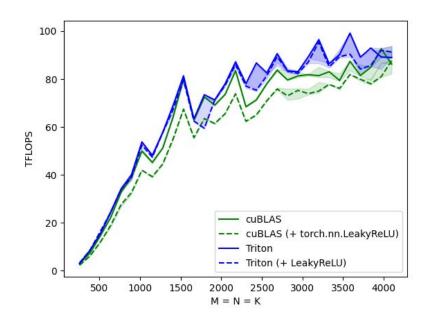
 for every input shape and is slower in cases

 where we care



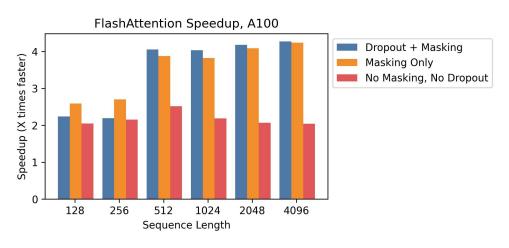
Matrix Multiplication

- → It takes <25 lines of code to write a Triton kernel on par with cuBLAS
- → Arbitrary ops can be "fused" before/after the GEMM while the data is still on-chip, leading to large speedups over PyTorch



Fused Attention (Flash Attention)

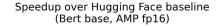
- → From the author: Triton is easier to understand and experiment with than CUDA
- → Triton forward + backward is slightly slower than CUDA forward + backward

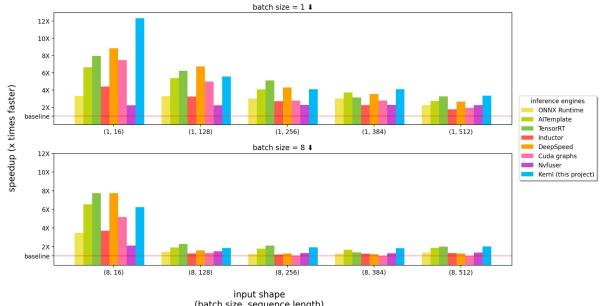




Kernl

- → Run PyTorch transformer models several times faster on GPU with a single line of code
- → The first OSS inference engine written in Triton





Contributing to Triton

Goals

- → Make Triton more robust
- → Using existing infrastructure to avoid creating new wheels
- → Support more backends

Ecosystem

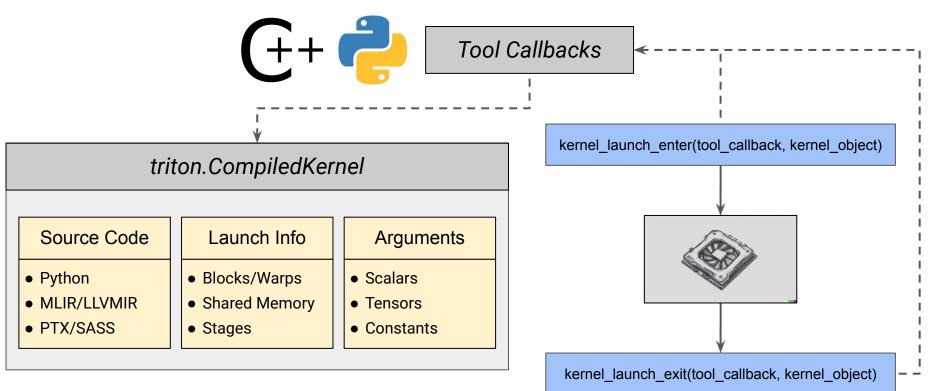
Debugger Status & Roadmap

- → Offloading mode (in progress)
 - ◆ Translate from Triton ops to PyTorch ops
 - Facilitate debugging algorithm/numerical issue
- → Native mode (proposed)
 - Assemble relevant line mapping information
 - Attribute out-of-bound memory accesses from SASS to Triton
 - Understand conversions between compiler transformation passes
- → Call for contributions!

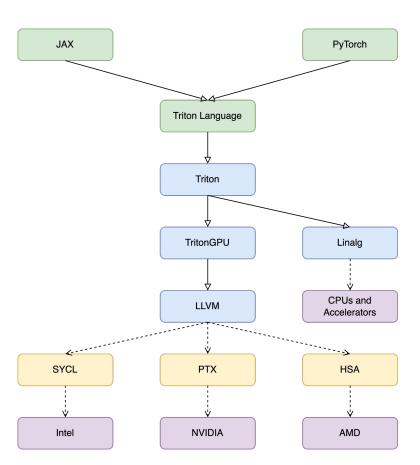
Profiler Status & Roadmap

- → Key objective: Provide low-overhead callbacks and essential kernel information for external tools
 - Avoid unnecessary reinvention of existing solutions
 - hpctoolkit/tau/nsight
 - ◆ Allow tools to instrument at multiple levels
 - Python/TritonIR/TritonGPUIR
 - Retain Triton's focuses on the design and optimization of the language

Callback Design



Backend Status



Takeaways

- → Triton is designed to achieve both high performance and flexibility
- → Triton has been used widely in open source projects
- → Triton supports multiple GPU backends already, with NVIDIA GPUs provide the highest performance

Additional Topics

- → Triton for HPC?
 - Rewrite existing algorithms for maintenance and performance
- → Details about Triton GPU backends?
 - Encoding/alias/membar/layout conversion
- → Refactor Triton APIs to address problems on emerging GPUs?
 - ◆ CTA cluster/warp specialization/tensor slicing
- → Challenges and opportunities of JIT-based code generation?

Thank You

Visit openai.com for more information.