G

OpenAl

Towards Agile Development of
Efficient Deep Learning Operators

Keren Zhou & Philippe Tillet

Deep Neural Networks (DNNs)

.- pn - Label: did
Classification Instance they ntract

+ Localization

Object Detection ar o

Classification Segmentation

AN

Guesses, on a
scale of 0-1, on

D 99D
XXX X

=)o =)o =ie=ie =)o =i)e

CAT, DOG, DUCK CAT, DOG, DUCK
AN J
h'd
Single object Multiple objects
Computer Vision Recommendation Systems
Natural Language Processing Speech Recognition

I https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/ https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
mage sources https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-wi - https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-
th-deep-learning-28293c162f7a part-2-deep-learning-for-recommender-systems/

Transform DNNs to Low Level Code

torch.randn(64, 32)
torch.randn(32, 64)
torch.randn(64, 64)
torch.mm(a, b)
c+d

T Q N O W
Il

Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA e GPU
e TensorFlow e TVM/Relay e HIP e CPU

e JAX e PyTorch/fx e OpenCL e FPGA

Transform DNNs to Low Level Code

torch.randn(64, 32)

torch.randn(32, 64) @

torch.randn(64, 64)

torch.mm(a, b) @

c+d

T Q N O W
Il

Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA e GPU
e TensorFlow e TVM/Relay e HIP e CPU

o JAX e TorchDynamo e OpenCL e FPGA

Transform DNNs to Low Level Code

__global
a = torch.randn(64, 32) void mm(float *a, float *b,
b = torch.randn(32, 64) @ float *c) {
¢ = torch.randn(64, 64) float *a_tile;
d = torch.mm(a, b) @ float *b_tile;
e=c+d
}
Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA e GPU
e TensorFlow e TVM/Relay e HIP e CPU

o JAX e TorchDynamo e OpenCL e FPGA

Transform DNNs to Low Level Code

__global
a = torch.randn(64, 32) void mm(float *a, float *b,
b = torch.randn(32, 64) @ float *c) {
¢ = torch.randn(64, 64) float *a_tile;
d = torch.mm(a, b) @ float *b_tile;
e=c+d
}
Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA
e TensorFlow e TVM/Relay e HIP

e JAX e TorchDynamo e OpenCL

Transform DNNs to Low Level Code

__global
a = torch.randn(64, 32) void mm(float *a, float *b,
b = torch.randn(32, 64) @ float *c) {
¢ = torch.randn(64, 64) float *a_tile;
d = torch.mm(a, b) @ float *b_tile;
e=c+d
}
Model ~ Graph ~ Kernel Device

e PyTorch e XLA/HLO
e TensorFlow e TVM/Relay

o JAX e TorchDynamo

A Large Number of Tensor Operators

-> Linear - Convolution - Normalization - Embedding
€ Fused & Depthwise € Batch
e Attention € Dilated & Layer
e Bilinear € Transposed
€ Sparse .
-> Pooling -> Loss -> Recurrent
e SDDMM _
€ Max/Min/Avg ¢ NLL € LSTM
e SPMM
& Adaptive & BCE ¢ GRU

Thousands of Operators in PyTorch and TensorFlow

- Common tensor data types

¢

L I B ZER JBE N JER JEE JER ~

Float64
Float32
Float32
Float16
BFloat16
Int64
Int32
Int16
Int8

Bool

Various Data Types

For performance critical kernels:
#Implementations =
#Data types X #Kernels

Handwritten Code

-> Low flexibility
€ Fine-tune for every shape/data type/algorithm
€ Employ assembly instructions
4
- High performance
€ Apply sophisticated instruction/operator scheduling
€ Simplify code
4

10

Handwritten Code is a Pain

-> For the company
4 Hard to hire new Machine Learning Engineers
€ Difficult to maintain libraries
-> For the researchers
€ Ablack box
e They want to understand how kernels work

e They want to fast validate new ideas at scale

11

Python-like Code

-> High flexibility
€ Build upon existing operators
€ No need to recompile
4
-> Low performance
€ Not fine-tuned for specific shapes

€ Intermediate memory movement

¢

Can we design a language to achieve both

high performance and flexibility?
12

'éneration Deep Learning Systems

Programming Models for DNNs

e PyTorch
e TensorFlow
o JAX

e XLA/HLO
e TVM/Relay
e TorchDynamo

e CUDA
e HIP
e OpenCL

14

Programming Models for DNNs

PyTorch
TensorFlow
JAX

XLA/HLO
TVM/Relay
TorchDynamo

CUDA
HIP
OpenCL
Triton

15

Inefficiencies of PyTorch V1

- A neural network with individual kernels
€ Canbe slow
€ Can run out-of-memory
-> A neural network with graph compiler (TorchScript)
€ Don't support custom data-structures
e lists/trees of tensors
e block-sparse tensors
€ Don't support custom precision format

€ Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2 (TorchDynamo)

Triton is Designed to Achieve Both High Flexibility and Performance

- Flexibility
€ A small core set of operations (~40 interface functions and ~20 core functions)
€ Can be composed into almost all existing PyTorch operators (Torchinductor)
4 SPMD but not SIMT
- Performance
€ JIT generated kernels
€ Handwritten PTX code

€ Many passes to combine, simplify, and schedule operations

17

Triton is a Python-Like Language

-> PyTorch compatible

€ Inputs can be PyTorch tensors or custom data-structures (e.g., tensors of pointers)
-> Python syntax

€ All standard python control flow structure (for/if/while/return) are supported

€ Python code is lowered to Triton IR

18

Dev Time

Dev Time VS Performance

SASS

CUDA

[CUTLASS]
TVM
[TensorFlow } @
Triton

{ PyTorch V1 } { PyTorch V2 }

Performance

>

19

Terminologies

- Parallelism
¢ Grid
e One for each kernel (Pre-Hopper)
€ Block/Warp/Thread

-> Memory
€ Global
e Visible to all threads
4 Shared
e Private to each block
¢ Local

e Private to each thread

21

CUDA vs Triton

CUDA Triton
Memory Global/Shared/Local Automatic
Parallelism Threads/Blocks/Warps Mostly Blocks
Tensor Core Manual Automatic
Vectorization .8/.16/.32/.64/.128 Automatic
Async SIMT Support Limited
Device Function Support Support

Using Triton, you only need to know that a program is
divided into multiple blocks

22

Vector Addition (Single Block)
import triton.language as tl
> Z[I] _ X[:] + Y[:] import triton
€ Without boundary check

N = 1024

x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')

23

Vector Addition (Boundary Check)

-> Z[:] = X[Z] + Y[:] @triton.jit

def _add(z_ptr, x_ptr, y _ptr, N):
same as torch.arange

‘ Wlth boundary CheCk offsets = tl.arange(0, 1024)

create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets

y_ptrs = y_ptr + offsets

z_ptrs = z_ptr + offsets

load 1024 elements of X, Y, Z

do computations
Z=XxX+Yy
write-back 1024 elements of X, Y, Z

= 192311
= torch.randn(N, device='cuda')
= torch.randn(N, device='cuda')

N < X 2

= torch.randn(N, device='cuda')
grid = (triton.cdiv(N, 1024),)
_add[grid](z, x, y, N)

Vector Addition (Custom Tile Size)

= Z[:] = X[] + Y[]

¢

Each block computes TILE

elements

-> (@triton.autotune

¢

¢

Select the best config based on
the execution time
We don't want to build complex

autotune policies into Triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):

N < X =2

offsets = tl.arange(9, TILE)
offsets += tl.program_id(@)*TILE

x_ptrs = x_ptr + offsets
y_ptrs = y ptr + offsets
z_ptrs = z_ptr + offsets

X

4

tl.load(x_ptrs, mask=offset<N)
tl.load(y_ptrs, mask=offset<N)

X +Yy

tl.store(z_ptrs, z, mask=offset<N)

192311

torch.randn(N, device='cuda')
torch.randn(N, device='cuda')
torch.randn(N, device='cuda')

25

Element-wise Operators

-> Triton and Torch both achieve peak
bandwidth
-> Researchers can write fused element-wise

operators easily using Triton

GB/s

800 A

600 -

200 A

— Triton
—— Torch

104

105

108
size

107

108

27

Fused Softmax

-> Triton kernels can keep data on-chip
throughout the entire softmax

- PyTorch JIT could in theory do that but in
practice doesn't

-> The native PyTorch op is designed to work
for every input shape and is slower in cases

where we care

800 A

700 A

600 -

GB/s

400 A

300 A

200 A

500 A

—— Triton
—— Torch (native)
—=—= Torch (jit)

e . . N e . e e -
s

2000

4000

6000
N

8000

10000 12000

28

Matrix Multiplication

=> |t takes <25 lines of code to write a Triton

kernel on par with cuBLAS

100 ~

-> Arbitrary ops can be “fused” before/after the

80 A

GEMM while the data is still on-chip, leading

60

TFLOPS

to large speedups over PyTorch

40 -

20 1 —— CuBLAS

—=—= CUBLAS (+ torch.nn.LeakyRelU)
— Triton

——~ Triton (+ LeakyReLU)

500 1000 1500 2000 2500 3000 3500 4000
M=N=K

Speedup (X times faster)
N IN

o
1

Fused Attention (Flash Attention)

-> From the author: Triton is easier to understand and experiment with than CUDA

-> Triton forward + backward is slightly slower than CUDA forward + backward

FlashAttention Speedup, A100

w
1

-
1

128

256

512 1024
Sequence Length

2048

4096

FlashAttention Memory Reduction

I Dropout + Masking
[Masking Only
B No Masking, No Dropout

20 A

15 A

10 A

Memory Reduction (X times less)

128

FlashAttention: Fast and Memory-Efficient Exact Attention with |0-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2205.14135

256 512 1024 2048 4096
Sequence Length

I Dropout + Masking

30

Kernl

- Run PyTorch transformer models several times faster on GPU with a single line of code

-> The first OSS inference engine written in Triton

speedup (x times faster)

Speedup over Hugging Face baseline

(Bert base, AMP fp16)

batch size=1 1

12X

10X

8X1

6X

4X

2X1
baseline

(1, 16)

(1,128) (1, 256)

batch size =8 1

(1, 384)

(1,512)

12X

10X

8X 1

6Xq

4X

2X1

baseline

(8, 16)

(8, 128) (8, 256)

input shape
(batch size, sequence length)
https://github.com/ELS-RD/kernl/

(8, 384)

(8,512)

inference engines
ONNX Runtime
i AlTemplate
- TensorRT
B Inductor
W DeepSpeed
W Cuda graphs
mmm Nvfuser
B Kernl (this project)

31

Goals

-> Make Triton more robust
-> Using existing infrastructure to avoid creating new wheels

-> Support more backends

33

Ecosystem

&

@ deepspeed T { _ } [} [. }
Runtime Debugger Profiler
kernl.ai

O PyTorch #ﬁx [

Language

|

|

Backends

34

Debugger Status & Roadmap

- Offloading mode (in progress)
€ Translate from Triton ops to PyTorch ops
e Facilitate debugging algorithm/numerical issue
- Native mode (proposed)
€ Assemble relevant line mapping information
e Attribute out-of-bound memory accesses from SASS to Triton
e Understand conversions between compiler transformation passes

=> Call for contributions!

35

Profiler Status & Roadmap

-> Key objective: Provide low-overhead callbacks and essential kernel information for
external tools
€ Avoid unnecessary reinvention of existing solutions
e hpctoolkit/tau/nsight
€ Allow tools to instrument at multiple levels
e Python/TritonIR/TritonGPUIR

€ Retain Triton’s focuses on the design and optimization of the language

36

Callback Design

‘ ++ P Tool Callbacks |<------------------

triton.CompiledKernel

Source Code Launch Info Arguments
e Python e Blocks/Warps e Scalars
e MLIR/LLVMIR e Shared Memory e Tensors
e PTX/SASS e Stages e Constants
\4

kernel_launch_exit(tool_callback, kernel_object)

37

Backend Status

JAX PyTorch

Triton Language

P VA :
LLVM CPUs and
Accelerators
PR v TTees

HSA

38

Takeaways

-> Triton is designed to achieve both high performance and flexibility
-> Triton has been used widely in open source projects
-> Triton supports multiple GPU backends already, with NVIDIA GPUs provide the highest

performance

39

Additional Topics

-> Triton for HPC?

€ Rewrite existing algorithms for maintenance and performance
-> Details about Triton GPU backends?

€ Encoding/alias/membar/layout conversion
-> Refactor Triton APIs to address problems on emerging GPUs?

€ CTA cluster/warp specialization/tensor slicing

-> Challenges and opportunities of JIT-based code generation?

40

Thank You

Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER

