
Towards Agile Development of
Efficient Deep Learning Operators

Keren Zhou & Philippe Tillet

Deep Neural Networks (DNNs)

2

Computer Vision

https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-
part-2-deep-learning-for-recommender-systems/

https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/ https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-wi
th-deep-learning-28293c162f7a

Image sources

Recommendation Systems

Speech RecognitionNatural Language Processing

Transform DNNs to Low Level Code

3

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

Transform DNNs to Low Level Code

4

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

Transform DNNs to Low Level Code

5

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

__global__

void mm(float *a, float *b,

float *c) {

 float *a_tile;

 float *b_tile;

 …
}

Transform DNNs to Low Level Code

6

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

Device

● GPU

● CPU

● FPGA

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

__global__

void mm(float *a, float *b,

float *c) {

 float *a_tile;

 float *b_tile;

 …
}

Transform DNNs to Low Level Code

7

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

Device

● GPU

● CPU

● FPGA

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d

a b

cmm

add

e

__global__

void mm(float *a, float *b,

float *c) {

 float *a_tile;

 float *b_tile;

 …
}

A Large Number of Tensor Operators

➔ Linear

◆ Fused

● Attention

● Bilinear

◆ Sparse

● SDDMM

● SPMM

➔ Convolution

◆ Depthwise

◆ Dilated

◆ Transposed

➔ Normalization

◆ Batch

◆ Layer

➔ Embedding

- TensorFlow: > 400 operators
- PyTorch: > 200 operators

8

➔ Pooling

◆ Max/Min/Avg

◆ Adaptive

➔ Loss

◆ NLL

◆ BCE

➔ Recurrent

◆ LSTM

◆ GRU

➔ Common tensor data types

◆ Float64

◆ Float32

◆ Float32

◆ Float16

◆ BFloat16

◆ Int64

◆ Int32

◆ Int16

◆ Int8

◆ Bool

Various Data Types

9

For performance critical kernels:
#Implementations ≈
#Data types ✕ #Kernels

Handwritten Code

10

➔ Low flexibility

◆ Fine-tune for every shape/data type/algorithm

◆ Employ assembly instructions

◆ …

➔ High performance

◆ Apply sophisticated instruction/operator scheduling

◆ Simplify code

◆ …

Handwritten Code is a Pain

11

➔ For the company

◆ Hard to recruit new Machine Learning Engineers

◆ Difficult to maintain libraries

➔ For the researchers

◆ A black box

● They want to understand how kernels work

● They want to fast validate new ideas at scale

Python-like Code

12

➔ High flexibility

◆ Build upon existing operators

◆ No need to recompile

◆ …

➔ Low performance

◆ Not fine-tuned for specific shapes

◆ Intermediate memory movement

◆ …

Can we design a language to achieve both
high performance and flexibility?

Triton
A Programming Model for the Next Generation Deep Learning Systems

13

Programming Models for DNNs

Graph
● XLA/HLO
● TVM/Relay
● PyTorch/fx

Kernel
● CUDA
● HIP
● OpenCL

Model
● PyTorch
● TensorFlow
● JAX

14

Programming Models for DNNs

Graph
● XLA/HLO
● TVM/Relay
● PyTorch/fx

Kernel

● CUDA
● HIP
● OpenCL
● Triton

Model
● PyTorch
● TensorFlow
● JAX

15

Inefficiencies of Existing PyTorch V1 Operators

16

➔ Individual kernels

◆ Can be slow

◆ Can run out-of-memory

➔ Graph compiler

◆ Don’t support custom data-structures

● lists/trees of tensors

● block-sparse tensors

◆ Don’t support custom precision format

◆ Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2

Triton is Designed to Achieve Both High Flexibility and Performance

17

➔ Flexibility

◆ A small core set of operations (~40 interface functions and ~20 core functions)

◆ Can be composed into almost all existing PyTorch operators (TorchInductor)

◆ SPMD but not SIMT

➔ Performance

◆ JIT generated kernels

◆ Handwritten PTX code

◆ Many passes to combine, simplify, and schedule operations

Triton Design

18

➔ PyTorch compatible

◆ Tensors are stored on-chip rather than off-chip

◆ Custom data-structures using tensors of pointers

➔ Python syntax

◆ All standard python control flow structure (for/if/while) are supported

◆ Python code is lowered to Triton IR

Write GPU Kernels Using Triton

19

GPU-accelerated Application Overview

20

➔ CPU and GPU execute asynchronously

➔ CPU dispatches commands to GPU

Terminologies

21

➔ Parallelism

◆ Grid

● One for each kernel

◆ Block/Warp/Thread

➔ Memory

◆ Global

● Visible to all threads

◆ Shared

● Private to each block

◆ Local

● Private to each thread

CUDA vs Triton

22

CUDA Triton

Memory Global/Shared/Local Automatic

Parallelism Threads/Blocks/Warps Mostly Blocks

Tensor Core Manual Automatic

Vectorization .8/.16/.32/.64/.128 Automatic

Async SIMT Support Limited

Device Function Support Not Available

Using Triton, you only need to know that a program is
divided into multiple blocks

import triton.language as tl

import triton

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

 # same as torch.arange

 offsets = tl.arange(0, 1024)

 # create 1024 pointers to X, Y, Z

 x_ptrs = x_ptr + offsets

 y_ptrs = y_ptr + offsets

 z_ptrs = z_ptr + offsets

 # load 1024 elements of X, Y, Z

 x = tl.load(x_ptrs)

 y = tl.load(y_ptrs)

 # do computations

 z = x + y

 # write-back 1024 elements of X, Y, Z

 tl.store(z_ptrs, z)

N = 1024

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = (1,)

_add[grid](z, x, y, N)

Vector Addition (Single Block)

23

➔ Z[:] = X[:] + Y[:]
◆ Without boundary check

➔ @triton.jit
◆ Kernel decorator

➔ tl.load() and tl.store()
◆ Load/store values from global to

shared/registers
➔ _add[grid](num_warps=K)

◆ grid = (G,)
● G thread blocks

◆ num_warps = K
◆ K = 4 by default

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

 # same as torch.arange

 offsets = tl.arange(0, 1024)

 offsets += tl.program_id(0)*1024

 # create 1024 pointers to X, Y, Z

 x_ptrs = x_ptr + offsets

 y_ptrs = y_ptr + offsets

 z_ptrs = z_ptr + offsets

 # load 1024 elements of X, Y, Z

 x = tl.load(x_ptrs, mask=offset<N)

 y = tl.load(y_ptrs, mask=offset<N)

 # do computations

 z = x + y

 # write-back 1024 elements of X, Y, Z

 tl.store(z_ptrs, z, mask=offset<N)

N = 192311

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = (triton.cdiv(N, 1024),)

_add[grid](z, x, y, N)

Vector Addition (Boundary Check)

24

➔ Z[:] = X[:] + Y[:]

◆ With boundary check

➔ program_id()

◆ Get the block id

➔ mask

◆ if mask[idx] is false, do not load

the data at address pointer[idx]

➔ triton.cdiv(N, 1024)

◆ (N – 1)//1024 + 1

@triton.autotune(configs=

 [triton.Config('TILE': 128),

 triton.Config('TILE': 256)]

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

 # same as torch.arange

 offsets = tl.arange(0, TILE)

 offsets += tl.program_id(0)*TILE

 # create 1024 pointers to X, Y, Z

 x_ptrs = x_ptr + offsets

 y_ptrs = y_ptr + offsets

 z_ptrs = z_ptr + offsets

 # load 1024 elements of X, Y, Z

 x = tl.load(x_ptrs, mask=offset<N)

 y = tl.load(y_ptrs, mask=offset<N)

 # do computations

 z = x + y

 # write-back 1024 elements of X, Y, Z

 tl.store(z_ptrs, z, mask=offset<N)

N = 192311

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = lambda args: (triton.cdiv(N, args["TILE"]),)

_add[grid](z, x, y, N)

Vector Addition (Custom Tile Size)

25

➔ Z[:] = X[:] + Y[:]

◆ Each block computes TILE

elements

➔ @triton.autotune

◆ Select the best config based on

the execution time

◆ We don’t want to build complex

autotune policies into Triton

Optimizing GPU Kernels

26

NVIDIA GA100 Architecture & Programming Challenges

27

➔ Multiple compute units

➔ Multiple memory spaces

➔ Multiple data types

➔ Thread synchronization/divergence

➔ Tensor cores

Techniques for Optimizing a GEMM Kernel

28

➔ Vanilla (1-10% fp32 peak)
➔ NVIDIA CUDA Programming Guide (30%-50% fp32 peak)

◆ +global memory coalesce
◆ +shared memory

➔ CUTLASS (80%-90% tf32 peak)
◆ +vectorization
◆ +shared bank conflict reduction
◆ +thread layout autotune
◆ +async shared memory transfer
◆ +multi-stage shared memory
◆ +tf32 tensor core

➔ cuBLAS (~90% tf32 peak)
◆ +register bank conflict reduction
◆ +control code optimization

Difficulty

C++ Template & PTX

C++/C

SASS

Utilizing Tensor Cores - Layout

29

➔ For each warp, we must load values into tiles of a specific layout to perform matrix

multiplications

◆ Each data type could have multiple layouts

◆ Different data types (e.g., fp16 vs fp64) have different layouts

16x8x16 (fp16) 16x8x8 (fp16) 8x8x4 (fp64)

➔ Swizzling tiles (T) when loading from global memory to avoid bank conflicts

➔ Simple padding do not work because we need to read multiple tiles on different rows

Utilizing Tensor Cores - Memory Swizzling

30

T0 T1 T2 T3 T4 T5 …

T0 T1 T2 T3 T4 T5 …

T0 T1 T2 T3 T4 T5 ..

Phase 0

Phase 1

Phase 2

T0 T1 T2 T3 T4 T5 …

T1 T0 T3 T2 T5 T4 …

Tn-1 T3 T0 T5 T2 T7 ..

Phase 0

Phase 1

Phase 2

Utilizing Tensor Cores - ldmatrix & stmatrix

31

➔ Each thread provides a pointer to 128b row of data in Shared Memory

➔ A row is broadcast to four threads to match the arrangement of tensor cores

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-ldmatrix

Techniques for Optimizing a GEMM Kernel

32

➔ Vanilla (1-10% fp32 peak)
➔ NVIDIA CUDA Programming Guide (30%-50% fp32 peak)

◆ +global memory coalesce
◆ +shared memory

➔ CUTLASS (80%-90% tf32 peak)
◆ +vectorization
◆ +shared bank conflict reduction
◆ +thread layout autotune
◆ +async shared memory transfer
◆ +multi-stage shared memory
◆ +tf32 tensor core

➔ cuBLAS (~90% tf32 peak)
◆ +register bank conflict reduction
◆ +control code optimization

Difficulty

Triton applies optimizations with
minimal annotations required

C++ Template & PTX

C++/C

SASS

Element-wise Operators

33

➔ Triton and Torch both achieve peak

bandwidth

➔ Researchers can write fused element-wise

operators easily using Triton

Fused Softmax

34

➔ Triton kernels can keep data on-chip

throughout the entire softmax

➔ PyTorch JIT could in theory do that but in

practice doesn’t

➔ The native PyTorch op is designed to work

for every input shape and is slower in cases

where we care

Matrix Multiplication

35

➔ It takes <25 lines of code to write a Triton

kernel on par with cuBLAS

➔ Arbitrary ops can be “fused” before/after the

GEMM while the data is still on-chip, leading

to large speedups over PyTorch

➔ From the author: Triton is easier to understand and experiment with than CUDA

➔ Triton forward + backward is slightly slower than CUDA forward + backward

Fused Attention (Flash Attention)

36
FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2205.14135

Kernl

37

➔ Run PyTorch transformer models several times faster on GPU with a single line of code

➔ The first OSS inference engine written in Triton

https://github.com/ELS-RD/kernl/

New Challenges With Hopper

- Tensor Memory Accelerator (TMA)

- Transfer large blocks of data between global memory and shared memory

- Distributed Shared Memory

- Direct communication between shared memory on different SMs

- Thread Block Cluster

- Cluster -> Grid -> Block -> Warp

- FP8 Data Types and Mode (Transformer Engine)

- Native FP8 tensor core

38

Triton-MLIR (Triton V2)

39

Goals

40

➔ Make Triton more robust

➔ Using existing infrastructure to avoid creating new wheels

➔ Support more backends

Features

41

➔ MLIR (Multi-level intermediate representation)
◆ Triton dialect
◆ TritonGPU dialect

➔ Clean layout concepts
◆ Distributed, Sliced, Blocked, Shared, DotOperand
◆ Adopted by CUTLASS (CuTe)

➔ Low overhead runtime
◆ Cache and fetch kernels using efficient signatures

➔ Debugging
◆ triton.language.print

➔ Profiler interface
◆ Kernel launch hooks
◆ Compilation hooks

Hierarchical Design

42

Multiple Frontends and Backends (In Progress)

43

Contributors
Anthropic
Da Yan
Meta
Shintaro Iwasaki
Microsoft
Ian Bearman
NVIDIA
Dongdong Li, Qingyi Liu, Chunwei Yan, Jun Yang, Chenggang Zhao, Ben Zhang, Goostavz Zhu

44

Takeaways

45

➔ Triton is designed to achieve both high performance and flexibility

➔ Triton V2 will be more robust than Triton V1

➔ Triton will support more backends other than NVIDIA GPUs soon

Thank You
Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER

46

