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Deep Neural Networks (DNNs)
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Computer Vision

https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-
part-2-deep-learning-for-recommender-systems/

https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/ https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-wi
th-deep-learning-28293c162f7a

Image sources

Recommendation Systems

Speech RecognitionNatural Language Processing



Transform DNNs to Low Level Code
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Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)

b = torch.randn(32, 64)

c = torch.randn(64, 64)

d = torch.mm(a, b)

e = c + d
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__global__

void mm(float *a, float *b, 

float *c) {

    float *a_tile;

    float *b_tile;

    …
}
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A Large Number of Tensor Operators

➔ Linear

◆ Fused

● Attention

● Bilinear

◆ Sparse

● SDDMM

● SPMM

➔ Convolution

◆ Depthwise

◆ Dilated

◆ Transposed

➔ Normalization

◆ Batch

◆ Layer

➔ Embedding

- TensorFlow: > 400 operators
- PyTorch: > 200 operators

8

➔ Pooling

◆ Max/Min/Avg

◆ Adaptive

➔ Loss

◆ NLL

◆ BCE

➔ Recurrent

◆ LSTM

◆ GRU



➔ Common tensor data types

◆ Float64

◆ Float32

◆ Float32

◆ Float16

◆ BFloat16

◆ Int64

◆ Int32

◆ Int16

◆ Int8

◆ Bool

Various Data Types
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For performance critical kernels:
#Implementations ≈ 
#Data types ✕ #Kernels



Handwritten Code
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➔ Low flexibility

◆ Fine-tune for every shape/data type/algorithm

◆ Employ assembly instructions

◆ …

➔ High performance

◆ Apply sophisticated instruction/operator scheduling

◆ Simplify code

◆ …



Handwritten Code is a Pain
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➔ For the company

◆ Hard to recruit new Machine Learning Engineers

◆ Difficult to maintain libraries

➔ For the researchers

◆ A black box

● They want to understand how kernels work

● They want to fast validate new ideas at scale



Python-like Code
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➔ High flexibility

◆ Build upon existing operators

◆ No need to recompile

◆ …

➔ Low performance

◆ Not fine-tuned for specific shapes

◆ Intermediate memory movement

◆ …

Can we design a language to achieve both
high performance and flexibility?



Triton
A Programming Model for the Next Generation Deep Learning Systems
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Programming Models for DNNs

Graph
● XLA/HLO
● TVM/Relay
● PyTorch/fx

Kernel
● CUDA
● HIP
● OpenCL

Model
● PyTorch
● TensorFlow
● JAX
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Inefficiencies of Existing PyTorch V1 Operators
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➔ Individual kernels

◆ Can be slow 

◆ Can run out-of-memory

➔ Graph compiler

◆ Don’t support custom data-structures

● lists/trees of tensors

● block-sparse tensors

◆ Don’t support custom precision format

◆ Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2 



Triton is Designed to Achieve Both High Flexibility and Performance
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➔ Flexibility

◆ A small core set of operations (~40 interface functions and ~20 core functions)

◆ Can be composed into almost all existing PyTorch operators (TorchInductor)

◆ SPMD but not SIMT

➔ Performance

◆ JIT generated kernels

◆ Handwritten PTX code

◆ Many passes to combine, simplify, and schedule operations



Triton Design
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➔ PyTorch compatible

◆ Tensors are stored on-chip rather than off-chip

◆ Custom data-structures using tensors of pointers

➔ Python syntax

◆ All standard python control flow structure (for/if/while) are supported

◆ Python code is lowered to Triton IR



Write GPU Kernels Using Triton
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GPU-accelerated Application Overview
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➔ CPU and GPU execute asynchronously

➔ CPU dispatches commands to GPU



Terminologies
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➔ Parallelism

◆ Grid

● One for each kernel

◆ Block/Warp/Thread

➔ Memory

◆ Global

● Visible to all threads

◆ Shared

● Private to each block

◆ Local

● Private to each thread



CUDA vs Triton
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CUDA Triton

Memory Global/Shared/Local Automatic

Parallelism Threads/Blocks/Warps Mostly Blocks

Tensor Core Manual Automatic

Vectorization .8/.16/.32/.64/.128 Automatic

Async SIMT Support Limited

Device Function Support Not Available

Using Triton, you only need to know that a program is 
divided into multiple blocks



import triton.language as tl

import triton

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

    # same as torch.arange

    offsets = tl.arange(0, 1024)  

    # create 1024 pointers to X, Y, Z

    x_ptrs = x_ptr + offsets 

    y_ptrs = y_ptr + offsets

    z_ptrs = z_ptr + offsets 

    # load 1024 elements of X, Y, Z 

    x = tl.load(x_ptrs)

    y = tl.load(y_ptrs)

    # do computations 

    z = x + y

    # write-back 1024 elements of X, Y, Z 

    tl.store(z_ptrs, z)

N = 1024

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = (1, )

_add[grid](z, x, y, N)

Vector Addition (Single Block)
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➔ Z[:] = X[:] + Y[:]
◆ Without boundary check

➔ @triton.jit
◆ Kernel decorator 

➔ tl.load() and tl.store()
◆ Load/store values from global to 

shared/registers
➔ _add[grid](num_warps=K)

◆ grid = (G,)
● G thread blocks

◆ num_warps = K
◆ K = 4 by default



@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

    # same as torch.arange

    offsets = tl.arange(0, 1024)

    offsets += tl.program_id(0)*1024 

    # create 1024 pointers to X, Y, Z

    x_ptrs = x_ptr + offsets 

    y_ptrs = y_ptr + offsets

    z_ptrs = z_ptr + offsets 

    # load 1024 elements of X, Y, Z 

    x = tl.load(x_ptrs, mask=offset<N)

    y = tl.load(y_ptrs, mask=offset<N)

    # do computations 

    z = x + y

    # write-back 1024 elements of X, Y, Z 

    tl.store(z_ptrs, z, mask=offset<N)

N = 192311

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = (triton.cdiv(N, 1024), )

_add[grid](z, x, y, N)

Vector Addition (Boundary Check)
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➔ Z[:] = X[:] + Y[:]

◆ With boundary check

➔ program_id()

◆ Get the block id

➔ mask

◆ if mask[idx] is false, do not load 

the data at address pointer[idx]

➔ triton.cdiv(N, 1024)

◆ (N – 1)//1024 + 1



@triton.autotune(configs=

    [triton.Config('TILE': 128),

     triton.Config('TILE': 256)]

@triton.jit

def _add(z_ptr, x_ptr, y_ptr, N):

    # same as torch.arange

    offsets = tl.arange(0, TILE)

    offsets += tl.program_id(0)*TILE 

    # create 1024 pointers to X, Y, Z

    x_ptrs = x_ptr + offsets 

    y_ptrs = y_ptr + offsets

    z_ptrs = z_ptr + offsets 

    # load 1024 elements of X, Y, Z 

    x = tl.load(x_ptrs, mask=offset<N)

    y = tl.load(y_ptrs, mask=offset<N)

    # do computations 

    z = x + y

    # write-back 1024 elements of X, Y, Z 

    tl.store(z_ptrs, z, mask=offset<N)

N = 192311

x = torch.randn(N, device='cuda')

y = torch.randn(N, device='cuda')

z = torch.randn(N, device='cuda')

grid = lambda args: (triton.cdiv(N, args["TILE"]), )

_add[grid](z, x, y, N)

Vector Addition (Custom Tile Size)
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➔ Z[:] = X[:] + Y[:]

◆ Each block computes TILE 

elements

➔ @triton.autotune

◆ Select the best config based on 

the execution time

◆ We don’t want to build complex 

autotune policies into Triton



Optimizing GPU Kernels
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NVIDIA GA100 Architecture & Programming Challenges
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➔ Multiple compute units

➔ Multiple memory spaces 

➔ Multiple data types

➔ Thread synchronization/divergence

➔ Tensor cores



Techniques for Optimizing a GEMM Kernel
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➔ Vanilla (1-10% fp32 peak)
➔ NVIDIA CUDA Programming Guide (30%-50% fp32 peak)

◆ +global memory coalesce
◆ +shared memory

➔ CUTLASS (80%-90% tf32 peak)
◆ +vectorization
◆ +shared bank conflict reduction
◆ +thread layout autotune
◆ +async shared memory transfer
◆ +multi-stage shared memory
◆ +tf32 tensor core 

➔ cuBLAS (~90% tf32 peak)
◆ +register bank conflict reduction
◆ +control code optimization

Difficulty

C++ Template & PTX

C++/C

SASS



Utilizing Tensor Cores - Layout
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➔ For each warp, we must load values into tiles of a specific layout to perform matrix 

multiplications

◆ Each data type could have multiple layouts

◆ Different data types (e.g., fp16 vs fp64) have different layouts

16x8x16 (fp16) 16x8x8 (fp16) 8x8x4 (fp64)



➔ Swizzling tiles (T) when loading from global memory to avoid bank conflicts

➔ Simple padding do not work because we need to read multiple tiles on different rows

Utilizing Tensor Cores - Memory Swizzling
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T0 T1 T2 T3 T4 T5 …

T0 T1 T2 T3 T4 T5 …

T0 T1 T2 T3 T4 T5 ..

Phase 0

Phase 1

Phase 2

T0 T1 T2 T3 T4 T5 …

T1 T0 T3 T2 T5 T4 …

Tn-1 T3 T0 T5 T2 T7 ..

Phase 0

Phase 1

Phase 2



Utilizing Tensor Cores - ldmatrix & stmatrix
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➔ Each thread provides a pointer to 128b row of data in Shared Memory

➔ A row is broadcast to four threads to match the arrangement of tensor cores

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-ldmatrix



Techniques for Optimizing a GEMM Kernel
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➔ Vanilla (1-10% fp32 peak)
➔ NVIDIA CUDA Programming Guide (30%-50% fp32 peak)

◆ +global memory coalesce
◆ +shared memory

➔ CUTLASS (80%-90% tf32 peak)
◆ +vectorization
◆ +shared bank conflict reduction
◆ +thread layout autotune
◆ +async shared memory transfer
◆ +multi-stage shared memory
◆ +tf32 tensor core 

➔ cuBLAS (~90% tf32 peak)
◆ +register bank conflict reduction
◆ +control code optimization

Difficulty

Triton applies optimizations with 
minimal annotations required

C++ Template & PTX

C++/C

SASS



Element-wise Operators
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➔ Triton and Torch both achieve peak 

bandwidth

➔ Researchers can write fused element-wise 

operators easily using Triton



Fused Softmax
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➔ Triton kernels can keep data on-chip 

throughout the entire softmax

➔ PyTorch JIT could in theory do that but in 

practice doesn’t

➔ The native PyTorch op is designed to work 

for every input shape and is slower in cases 

where we care



Matrix Multiplication
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➔ It takes <25 lines of code to write a Triton 

kernel on par with cuBLAS

➔ Arbitrary ops can be “fused” before/after the 

GEMM while the data is still on-chip, leading 

to large speedups over PyTorch



➔ From the author: Triton is easier to understand and experiment with than CUDA

➔ Triton forward + backward is slightly slower than CUDA forward + backward

Fused Attention (Flash Attention)
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FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2205.14135



Kernl
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➔ Run PyTorch transformer models several times faster on GPU with a single line of code

➔ The first OSS inference engine written in Triton

https://github.com/ELS-RD/kernl/



New Challenges With Hopper

- Tensor Memory Accelerator (TMA)

- Transfer large blocks of data between global memory and shared memory

- Distributed Shared Memory

- Direct communication between shared memory on different SMs

- Thread Block Cluster

- Cluster -> Grid -> Block -> Warp

- FP8 Data Types and Mode (Transformer Engine)

- Native FP8 tensor core
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Triton-MLIR (Triton V2)
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Goals

40

➔ Make Triton more robust

➔ Using existing infrastructure to avoid creating new wheels

➔ Support more backends



Features
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➔ MLIR (Multi-level intermediate representation)
◆ Triton dialect
◆ TritonGPU dialect 

➔ Clean layout concepts
◆ Distributed, Sliced, Blocked, Shared, DotOperand
◆ Adopted by CUTLASS (CuTe)

➔ Low overhead runtime
◆ Cache and fetch kernels using efficient signatures

➔ Debugging
◆ triton.language.print

➔ Profiler interface
◆ Kernel launch hooks
◆ Compilation hooks



Hierarchical Design
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Multiple Frontends and Backends (In Progress)
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Takeaways
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➔ Triton is designed to achieve both high performance and flexibility

➔ Triton V2 will be more robust than Triton V1

➔ Triton will support more backends other than NVIDIA GPUs soon



Thank You
Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER
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