G

OpenAl

Towards Agile Development of
Efficient Deep Learning Operators

Keren Zhou & Philippe Tillet

Deep Neural Networks (DNNs)

Classification . . Instance e
Object Detection or

Classification Segmentation

+ Localization

. C . m ~
g '
J &
A A Guesses, on a
¢ scale of 0-1, on
how likely it is
T that each user-
item combo

interacted

CAT, DOG, DUCK CAT, DOG, DUCK

=De =Be =De=Be ZDo=e
D 99Q 9L
X X X< Xi

& AN J
' '
Single object Multiple objects
Computer Vision Recommendation Systems
ENCODER DECODER

Input Output

Neural Network = “Hello”
(Embedding) s d f
1 1 1 1 ouna wu”ve o ” Plain text
how e il . me saying “Hello
mew b oo ’ Speech Recognition

Natural Language Processing

https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/ https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571
https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-wi - https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-system-
th-deep-learning-28293c162f7a part-2-deep-learning-for-recommender-systems/

Image sources

Transform DNNs to Low Level Code

torch.randn(64, 32)
torch.randn(32, 64)
torch.randn(64, 64)
torch.mm(a, b)
c+d

T Q N O W
Il

Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA e GPU
e TensorFlow e TVM/Relay e HIP e CPU

e JAX e PyTorch/fx e OpenCL e FPGA

Transform DNNs to Low Level Code

torch.randn(64, 32)

torch.randn(32, 64) @

torch.randn(64, 64)

torch.mm(a, b) @

c+d

T Q N O W
Il

Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA e GPU
e TensorFlow e TVM/Relay e HIP e CPU

o JAX e PyTorch/fx e OpenCL e FPGA

Transform DNNs to Low Level Code

__global
a = torch.randn(64, 32) void mm(float *a, float *b,
b = torch.randn(32, 64) @ float *c) {
¢ = torch.randn(64, 64) float *a_tile;
d = torch.mm(a, b) @ float *b_tile;
e=c+d
}
Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA e GPU
e TensorFlow e TVM/Relay e HIP e CPU

o JAX e PyTorch/fx e OpenCL e FPGA

Transform DNNs to Low Level Code

__global
a = torch.randn(64, 32) void mm(float *a, float *b,
b = torch.randn(32, 64) @ float *c) {
¢ = torch.randn(64, 64) float *a_tile;
d = torch.mm(a, b) @ float *b_tile;
e=c+d
}
Model Graph Kernel Device

e PyTorch e XLA/HLO e CUDA
e TensorFlow e TVM/Relay e HIP

e JAX e PyTorch/fx e OpenCL

Transform DNNs to Low Level Code

__global
a = torch.randn(64, 32) void mm(float *a, float *b,
b = torch.randn(32, 64) @ float *c) {
¢ = torch.randn(64, 64) float *a_tile;
d = torch.mm(a, b) @ float *b_tile;
e=c+d
}
Model ~ Graph ~ Kernel Device

e PyTorch e XLA/HLO
e TensorFlow e TVM/Relay

e JAX e PyTorch/fx

-> Linear
€ Fused
e Attention
e Bilinear
€ Sparse
e SDDMM
e SPMM

A Large Number of Tensor Operators

-> Convolution -> Normalization
& Depthwise € Batch
& Dilated & Layer

€ Transposed

-> Pooling -> Loss
€ Max/Min/Avg ¢ NLL
& Adaptive 4 BCE

- TensorFlow: > 400 operators
- PyTorch: > 200 operators

- Embedding

-> Recurrent
¢ LSTM
¢ GRU

- Common tensor data types

¢

L I B ZER JBE N JER JEE JER ~

Float64
Float32
Float32
Float16
BFloat16
Int64
Int32
Int16
Int8

Bool

Various Data Types

For performance critical kernels:
#Implementations =
#Data types X #Kernels

Handwritten Code

-> Low flexibility
€ Fine-tune for every shape/data type/algorithm
€ Employ assembly instructions
4
- High performance
€ Apply sophisticated instruction/operator scheduling
€ Simplify code
4

10

Handwritten Code is a Pain

-> For the company
4 Hard to recruit new Machine Learning Engineers
€ Difficult to maintain libraries
-> For the researchers
€ Ablack box
e They want to understand how kernels work

e They want to fast validate new ideas at scale

11

Python-like Code

-> High flexibility
€ Build upon existing operators
€ No need to recompile
4
-> Low performance
€ Not fine-tuned for specific shapes

€ Intermediate memory movement

¢

Can we design a language to achieve both

high performance and flexibility?
12

'éneration Deep Learning Systems

Programming Models for DNNs

e PyTorch
e TensorFlow
o JAX

e XLA/HLO
e TVM/Relay
e PyTorch/fx

e CUDA
e HIP
e OpenCL

14

Programming Models for DNNs

PyTorch
TensorFlow
JAX

XLA/HLO
TVM/Relay
PyTorch/fx

CUDA
HIP
OpenCL
Triton

15

Inefficiencies of Existing PyTorch V1 Operators

-> Individual kernels
€ Canbe slow
€ Can run out-of-memory
-> Graph compiler
€ Don't support custom data-structures
e lists/trees of tensors
e block-sparse tensors
€ Don't support custom precision format

€ Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2

16

Triton is Designed to Achieve Both High Flexibility and Performance

- Flexibility
€ A small core set of operations (~40 interface functions and ~20 core functions)
€ Can be composed into almost all existing PyTorch operators (Torchinductor)
4 SPMD but not SIMT
- Performance
€ JIT generated kernels
€ Handwritten PTX code

€ Many passes to combine, simplify, and schedule operations

17

Triton Design

-> PyTorch compatible
€ Tensors are stored on-chip rather than off-chip
€ Custom data-structures using tensors of pointers
-> Python syntax
€ All standard python control flow structure (for/if/while) are supported

€ Python code is lowered to Triton IR

18

GPU-accelerated Application Overview

- CPU and GPU execute asynchronously

-> CPU dispatches commands to GPU

E S Kernel _— N
= = Memc CPU Activities Memc Synchronization
—Illlll_ py LaunCh I‘ | py y |
CPU offioad \,/ offload \, offioad \/
CPU->GPU Memcpy || GPU Kernel I | GPU->CPU Memcpy I
GPU

20

- Parallelism
¢ Grid
e One for each kernel
€ Block/Warp/Thread

- Memory
€ Global
e Visible to all threads
4 Shared
e Private to each block
¢ Local

e Private to each thread

Terminologies

21

CUDA vs Triton

CUDA Triton
Memory Global/Shared/Local Automatic
Parallelism Threads/Blocks/Warps Mostly Blocks
Tensor Core Manual Automatic
Vectorization .8/.16/.32/.64/.128 Automatic
Async SIMT Support Limited
Device Function Support Not Available

Using Triton, you only need to know that a program is
divided into multiple blocks

22

Vector Addition (Single Block)
import triton.language as tl
> Z[I] _ X[:] + Y[:] import triton
€ Without boundary check

N = 1024

x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')

23

Vector Addition (Boundary Check)

Z[:] = X[] + Y[]

€ With boundary check

program_id()

€ Gettheblockid

mask

& if mask|idx] is false, do not load
the data at address pointer[idx]

triton.cdiv(N, 1024)

& (N-1)/1024+1

@triton.jit
def _add(z_ptr, x_ptr, y _ptr, N):

offsets = tl.arange(9, 1024)

x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
Z=XxX+Yy

N = 192311

x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (triton.cdiv(N, 1024),)
_add[grid](z, x, y, N)

24

Vector Addition (Custom Tile Size)

= Z[] = X[] + Y[]

¢

Each block computes TILE

elements

-> (@triton.autotune

¢

¢

Select the best config based on
the execution time
We don't want to build complex

autotune policies into Triton

@triton.jit
def _add(z_ptr, x_ptr, y_ptr, N):

N < X =2

offsets = tl.arange(9, TILE)
offsets += tl.program_id(@)*TILE

x_ptrs = x_ptr + offsets
y_ptrs = y ptr + offsets
z_ptrs = z_ptr + offsets

X

4

tl.load(x_ptrs, mask=offset<N)
tl.load(y_ptrs, mask=offset<N)

X +Yy

tl.store(z_ptrs, z, mask=offset<N)

192311

torch.randn(N, device='cuda')
torch.randn(N, device='cuda')
torch.randn(N, device='cuda')

25

2 2 A

NVIDIA GA100 Architecture & Programming Challenges

Multiple compute units

Multiple memory spaces

Multiple data types

Thread synchronization/divergence

Tensor cores

GPU

GPCs

TPCs

SMs | Warp Schedulers |

| INTUs I | SFUs I

Registers TCUs
A | Lo cache

[L1 Data Cache/Shared Memory |[L1 Inst Cache Y

)

v v

L2 Cache
A

v
High Bandwidth Memory

27

v

Techniques for Optimizing a GEMM Kernel

Vanilla (1-10% fp32 peak)
NVIDIA CUDA Programming Guide (30%-50% fp32 peak)

¢
¢

+global memory coalesce
+shared memory

CUTLASS (80%-90% tf32 peak)

L 2R 2R 2R 28 2R 4

+vectorization

+shared bank conflict reduction
+thread layout autotune

+async shared memory transfer
+multi-stage shared memory
+tf32 tensor core

CUBLAS (~90% tf32 peak)

4
4

+register bank conflict reduction
+control code optimization

C++/C

C++ Template & PTX

SASS

Difficulty

28

Utilizing Tensor Cores - Layout

-> For each warp, we must load values into tiles of a specific layout to perform matrix
multiplications
€ Each data type could have multiple layouts
€ Different data types (e.g., fp16 vs fp64) have different layouts

16x8x16 (fp16) 16x8x8 (fp16) 8x8x4 (fp64)

29

Utilizing Tensor Cores - Memory Swizzling

- Swizzling tiles (T) when loading from global memory to avoid bank conflicts

-> Simple padding do not work because we need to read multiple tiles on different rows

PhaseO | TO T1 | T2 | T3 | T4 T5
Phase1 | TO T1 { T2 T3 | T4 T5
Phase2 | TO T1 | T2 T3 | T4 T5

| T2 | T3 | T4 T5

Phase 0 | TO @ T1
Phase1 | T1 = TO

Phase2 | Tn1 T3

Utilizing Tensor Cores - Idmatrix & stmatrix

-> Each thread provides a pointer to 128b row of data in Shared Memory

-> Arow is broadcast to four threads to match the arrangement of tensor cores

ldmatrix with .num = .x1, r = {d0}
Col0 coll col2 col3 col4 col5 Col6 col7
rowQ %laneid =0 Slaneid = 1 %laneid = 2 %laneid =3
dst=d0 dst=d0 dst=d0 dst=d0
rowl %laneid = 4 %laneid =5 Slaneid = 6 %laneid =7
dst=d0 dst=d0 dst=d0 dst=d0
row2 %laneid =8 Slaneid =9 %laneid = 10 Ylaneid = 11
dst=d0 dst=d0 dst=d0 dst=d0
row3 %laneid =12 %laneid =13 %laneid = 14 %laneid = 15
dst=d0 dst=d0 dst=d0 dst=d0
rows %laneid = 16 Y%laneid = 17 Y%laneid = 18 Y%laneid = 19
dst=d0 dst=d0 dst=d0 dst=dD
rows %laneid = 20 Ylaneid = 21 Ylaneid = 22 Ylaneid = 23
dst=d0 dst=d0 dst=d0 dst=d0
rowé %laneid = 24 %laneid = 25 Y%laneid = 26 Ylaneid = 27
dst=d0 dst=d0 dst=d0 dst=d0
row7 %laneid = 28 %laneid = 29 %laneid =30 Ylaneid =31
dst=d0 dst=d0 dst=d0 dst=d0

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions-ldmatrix

v

Techniques for Optimizing a GEMM Kernel

Vanilla (1-10% fp32 peak)

NVIDIA CUDA Programming Guide (30%-50% fp32 peak)

¢
¢

+global memory coalesce
+shared memory

CUTLASS (80%-90% tf32 peak)

L 2R 2R 2R 28 2R 4

+vectorization

+shared bank conflict reduction
+thread layout autotune

+async shared memory transfer
+multi-stage shared memory
+tf32 tensor core

CUBLAS (~90% tf32 peak)

4
4

+register bank conflict reduction
+control code optimization

\

C++/C

C++ Template & PTX

J

Triton applies optimizations with
minimal annotations required

SASS

Difficulty

32

Element-wise Operators

-> Triton and Torch both achieve peak
bandwidth
-> Researchers can write fused element-wise

operators easily using Triton

GB/s

800 A

600 -

200 A

— Triton
—— Torch

104

105

108
size

107

108

33

Fused Softmax

-> Triton kernels can keep data on-chip
throughout the entire softmax

- PyTorch JIT could in theory do that but in
practice doesn't

-> The native PyTorch op is designed to work
for every input shape and is slower in cases

where we care

800 A

700 A

600 -

GB/s

400 A

300 A

200 A

500 A

—— Triton
—— Torch (native)
—=—= Torch (jit)

e . . N e . e e -
s

2000

4000

6000
N

8000

10000 12000

34

Matrix Multiplication

=> |t takes <25 lines of code to write a Triton

kernel on par with cuBLAS

100 ~

-> Arbitrary ops can be “fused” before/after the

80 A

GEMM while the data is still on-chip, leading

60

TFLOPS

to large speedups over PyTorch

40 -

20 1 —— CuBLAS

—=—= CUBLAS (+ torch.nn.LeakyRelU)
— Triton

——~ Triton (+ LeakyReLU)

500 1000 1500 2000 2500 3000 3500 4000
M=N=K

Speedup (X times faster)
N IN

o
1

Fused Attention (Flash Attention)

-> From the author: Triton is easier to understand and experiment with than CUDA

-> Triton forward + backward is slightly slower than CUDA forward + backward

FlashAttention Speedup, A100

w
1

-
1

128

256

512 1024
Sequence Length

2048

4096

FlashAttention Memory Reduction

I Dropout + Masking
[Masking Only
B No Masking, No Dropout

20 A

15 A

10 A

Memory Reduction (X times less)

128

FlashAttention: Fast and Memory-Efficient Exact Attention with |0-Awareness
Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, Christopher Ré
Paper: https://arxiv.org/abs/2205.14135

256 512 1024 2048 4096
Sequence Length

I Dropout + Masking

36

Kernl

- Run PyTorch transformer models several times faster on GPU with a single line of code

-> The first OSS inference engine written in Triton

speedup (x times faster)

Speedup over Hugging Face baseline

(Bert base, AMP fp16)

batch size=1 1

12X

10X

8X1

6X

4X

2X1
baseline

(1, 16)

(1,128) (1, 256)

batch size =8 1

(1, 384)

(1,512)

12X

10X

8X 1

6Xq

4X

2X1

baseline

(8, 16)

(8, 128) (8, 256)

input shape
(batch size, sequence length)
https://github.com/ELS-RD/kernl/

(8, 384)

(8,512)

inference engines
ONNX Runtime
i AlTemplate
- TensorRT
B Inductor
W DeepSpeed
W Cuda graphs
mmm Nvfuser
B Kernl (this project)

37

New Challenges With Hopper

Tensor Memory Accelerator (TMA)
- Transfer large blocks of data between global memory and shared memory
Distributed Shared Memory
- Direct communication between shared memory on different SMs
Thread Block Cluster
- Cluster -> Grid -> Block -> Warp
FP8 Data Types and Mode (Transformer Engine)

- Native FP8 tensor core

38

Goals

-> Make Triton more robust
-> Using existing infrastructure to avoid creating new wheels

-> Support more backends

40

Features

- MLIR (Multi-level intermediate representation)
€ Triton dialect
€ TritonGPU dialect
-> Clean layout concepts
€ Distributed, Sliced, Blocked, Shared, DotOperand
€ Adopted by CUTLASS (CuTe)
- Low overhead runtime
€ Cache and fetch kernels using efficient signatures
- Debugging
€ triton.language.print
- Profiler interface
€ Kernel launch hooks
€ Compilation hooks

11

Hierarchical Design

R RREREEEEEELLE Triton Language
: v >
Triton] ‘ SCF ’ ‘ Arithmetic ’ ’ Standard w ‘ Math ’ ‘ Tensor
TritonGPU
: . J

Libdevice
: GPU
é D ——> Conversion
: | NVVM ’ ‘ LLVM -----> Translation
- (A Language

-------------------------------- > LLVM IR
Dialect

PTX Low-level IR

-4

Multiple Frontends and Backends (In Progress)

JAX PyTorch

— "

Triton Language

S VAR
Triton
TritonGPU Linalg
vV . v
LLVM CPUs and
Accelerators
W
SYCL PTX HSA

43

Takeaways

-> Triton is designed to achieve both high performance and flexibility
-> Triton V2 will be more robust than Triton V1

-> Triton will support more backends other than NVIDIA GPUs soon

45

Thank You

Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER

