

Towards Agile Development of Efficient Deep Learning Operators

OpenAl Research Acceleration Team Presenter: Keren Zhou

Deep Neural Networks (DNNs)

Computer Vision

Natural Language Processing

Recommendation Systems

Speech Recognition

Image sources

https://chaosmail.github.io/deeplearning/2016/10/22/intro-to-deep-learning-for-computer-vision/ https://medium.com/@ageitgey/machine-learning-is-fun-part-6-how-to-do-speech-recognition-wi th-deep-learning-28293c162f7a

https://towardsdatascience.com/language-translation-with-rnns-d84d43b40571 https://developer.nvidia.com/blog/how-to-build-a-winning-recommendation-systempart-2-deep-learning-for-recommender-systems/

a = torch.randn(64, 32) b = torch.randn(32, 64) c = torch.randn(64, 64) d = torch.mm(a, b) e = c + d

Model	Graph	Kernel	Device
 PyTorch TensorFlow JAX 	 XLA/HLO TVM/Relay PyTorch/fx 	 CUDA HIP OpenCL 	GPUCPUFPGA
	, , , , , , , , , , , , , , , , , , ,		

A Large Number of Tensor Operators

→ Linear	→ Convolution	\rightarrow Normalization	\rightarrow Embedding
♦ Fused	 Depthwise 	♦ Batch	
Attention	Dilated	◆ Layer	
Bilinear	 Transposed 		
◆ Sparse	→ Pooling	→ Loss	→ Recurrent
SDDMMSPMM	Max/Min/Avg	♦ NLL	♦ LSTM
	 Adaptive 	♦ BCE	♦ GRU

Thousands of Operators in PyTorch and TensorFlow

Various Data Types

→ Common tensor data types

- Float32
- Float32
- Float16
- BFloat16
- Int64

Int16

Int8

For performance critical kernels: #Implementations ≈ #Data types X #Kernels

Handwritten Code

→ Low flexibility

- Fine-tune for every shape/data type/algorithm
- Employ assembly instructions
- → High performance

•••

...

- Apply sophisticated instruction/operator scheduling
- Simplify code

Handwritten Code is a Pain

 \rightarrow For the company

- Hard to hire new Machine Learning Engineers
- Difficult to maintain libraries
- \rightarrow For the researchers
 - A black box
 - They want to understand how kernels work
 - They want to fast validate new ideas at scale

Python-like Code

- → High flexibility
 - Build upon existing operators
 - No need to recompile
- → Low performance

...

...

- Not fine-tuned for specific shapes
- Intermediate memory movement

Can we design a language to achieve both high performance and flexibility?

Triton A Programming Model for the Next Generation Deep Learning Systems

Programming Models for DNNs

Programming Models for DNNs

Inefficiencies of PyTorch V1

- → A neural network with individual kernels
 - Can be slow
 - Can run out-of-memory
- → A neural network with graph compiler (TorchScript)
 - Don't support custom data-structures
 - lists/trees of tensors
 - block-sparse tensors
 - Don't support custom precision format
 - Automatic kernel fusion is limited

Solution: Employ Triton -> PyTorch V2 (TorchDynamo)

Triton is Designed to Achieve Both High Flexibility and Performance

→ Flexibility

- ◆ A small core set of operations (~40 interface functions and ~20 core functions)
- Can be composed into almost all existing PyTorch operators (TorchInductor)
- SPMD but not SIMT
- → Performance
 - JIT generated kernels
 - Handwritten PTX code
 - Many passes to combine, simplify, and schedule operations

Triton is a Python-Like Language

- → PyTorch compatible
 - Inputs can be PyTorch tensors or custom data-structures (e.g., tensors of pointers)
- → Python syntax
 - All standard python control flow structure (for/if/while/return) are supported
 - Python code is lowered to Triton IR

Triton JIT-Compilation Workflow

Optimization Passes

→ Triton specific optimizations

- Prefetch
- Matmul accelerate
- Coalesce
- Reorder
- → MLIR optimizations
 - CSE, DCE, Inlining, ...

%laneid:{fragments}

Analysis Passes

→ Shared memory

- Alias
- Liveness
- Barrier
- → Pointer alignment
- → Call graph

*noinline" functions

Figure 2

Dev Time VS Performance

Write GPU Kernels Using Triton

Terminologies

→ Parallelism

- One for each kernel (Pre-Hopper)
- Block/Warp/Thread
- → Memory
 - Global
 - Visible to all threads
 - Shared
 - Private to each block
 - Local
 - Private to each thread

CUDA vs Triton

	CUDA	Triton
Memory	Global/Shared/Local	Automatic
Parallelism	Threads/Blocks/Warps	Mostly Blocks
Tensor Core	Manual	Automatic
Vectorization	.8/.16/.32/.64/.128	Automatic
Async SIMT	Support	Limited
Device Function	Support	Support

Using Triton, you only need to know that a program is divided into multiple blocks

Vector Addition (Single Block)

- → Z[:] = X[:] + Y[:]
 - Without boundary check

import triton.language as tl
import triton

.....

N = **1024**

- x = torch.randn(N, device='cuda')
- y = torch.randn(N, device='cuda')
- z = torch.randn(N, device='cuda')

Vector Addition (Boundary Check)

- → Z[:] = X[:] + Y[:]
 - With boundary check

@triton.jit

```
def _add(z_ptr, x_ptr, y_ptr, N):
    # same as torch.arange
    offsets = tl.arange(0, 1024)
```

create 1024 pointers to X, Y, Z
x_ptrs = x_ptr + offsets
y_ptrs = y_ptr + offsets
z_ptrs = z_ptr + offsets
load 1024 elements of X, Y, Z

do computations
z = x + y
write-back 1024 elements of X, Y, Z

N = 192311
x = torch.randn(N, device='cuda')
y = torch.randn(N, device='cuda')
z = torch.randn(N, device='cuda')
grid = (triton.cdiv(N, 1024),)
_add[grid](z, x, y, N)

Vector Addition (Custom Tile Size)

- → Z[:] = X[:] + Y[:]
 - Each block computes TILE elements
- → @triton.autotune
 - Select the best config based on the execution time
 - We don't want to build complex autotune policies into Triton

@triton.jit

```
def _add(z_ptr, x_ptr, y_ptr, N):
    # same as torch.arange
    offsets = tl.arange(0, TILE)
    offsets += tl.program_id(0)*TILE
    # create 128/256 pointers to X, Y, Z
    x_ptrs = x_ptr + offsets
    y_ptrs = y_ptr + offsets
    z_ptrs = z_ptr + offsets
    # load 128/256 elements of X, Y, Z
    x = tl.load(x_ptrs, mask=offset<N)
    y = tl.load(y_ptrs, mask=offset<N)
    # do computations
    z = x + y
    # write-back 128/256 elements of X, Y, Z
    tl.store(z_ptrs, z, mask=offset<N)</pre>
```

N = 192311 x = torch.randn(N, device='cuda') y = torch.randn(N, device='cuda') z = torch.randn(N, device='cuda')

Performance of Triton Kernels

Element-wise Operators

 \rightarrow Triton and Torch both achieve peak

bandwidth

→ Researchers can write fused element-wise operators easily using Triton

Fused Softmax

→ Triton kernels can keep data on-chip

throughout the entire softmax

- → PyTorch JIT could in theory do that but in practice doesn't
- → The native PyTorch op is designed to work for every input shape and is slower in cases where we care

Matrix Multiplication

→ It takes <25 lines of code to write a Triton

kernel on par with cuBLAS

→ Arbitrary ops can be "fused" before/after the GEMM while the data is still on-chip, leading

to large speedups over PyTorch

Fused Attention (Flash Attention)

→ From the author: Triton is easier to understand and experiment with than CUDA

→ Triton forward + backward is slightly slower than CUDA forward + backward

Kernl

→ Run PyTorch transformer models several times faster on GPU with a single line of code

Speedup over Hugging Face baseline

→ The first OSS inference engine written in Triton

input shape (batch size, sequence length) https://github.com/ELS-RD/kernl/

Contributing to Triton

Goals

- → Make Triton more robust
- → Using existing infrastructure to avoid creating new wheels
- → Support more backends

Ecosystem

Backend Status

Collaborations @ Intel

- → Started from this thread
 - Thanks to Eikan Wang, Chengjun Lu, and etc.

[Triton-SPIRV] General idea and question on Triton #811

chengjunlu started this conversation in Ideas

chengjunlu on Oct 27, 2022

Hi @ptillet,

I am bringing up the Triton on Intel GPU.

The integration idea is naively thru:

TritonIR -> LLVM with SPIRV intrinsic -> SPV kernel -> SYCL runtime to run the kernel on Intel GPU platform.

. . .

Potential Tool Support for Triton

→ Debugger

- Detect memory leaks/data race/uninitialized values
 - On par with NVIDIA's compute-sanitizer
- → Profiler
 - Trace multiple processes with low overhead
 - On par with NVIDIA's Nsight Systems
 - Measure accurate kernel times and instruction stall reasons
 - On par with NVIDIA's Nsight Compute

Takeaways

- → Triton is designed to achieve both high performance and flexibility
- → Triton has been used widely in open source projects
- → Triton supports multiple GPU backends already
 - NVIDIA GPUs provide the highest performance

Community Meetings

→ We will be starting (tentatively monthly) 1-hour long virtual community meetings to give

the opportunity to triton users and developers to ask questions, provide feedback, or

present their work. The first inaugural meeting will happen on July 19th at 10am PST

via Google Meet

meet.google.com/jsw-bvej-ekz

Thank You

Visit openai.com for more information.

FOLLOW @OPENAI ON TWITTER