
Tile-based Programming
Models for AI

Keren Zhou
kzhou6@gmu.edu

Evolution of AI

2

AI Software Stack

3

Hot LLM Topics

● Agent
○ Tool, Planner, Memory, Environment, Multi-Agent, …

● Reasoning
○ Chain-of-Thoughts, ReAct, Reflexion, Self-consistency, …

● Reinforcement Learning
○ Tool-augmented, Instruction Tuning, Human Feedback, …

● Systems
○ KV Cache, Prefill, Decoding, Pipelining, Tensor Parallelism, Batching, …

● Kernels
○ MXFP, Quantization, MoE, Normalization, Batch GEMM, Linear/Flash/Paged/Attention, …

4
We’re going to focus on programming languages that

empowers systems and kernels

Outline

● Parallel Systems

● Tile-Based Programming

● Triton

● Triton-Puzzles

5

Parallel Systems

6

Overview

● Multi-core CPUs

● GPUs

● Accelerators

7

CPU Architectures

● x86 (Intel, AMD)

● ARM (Advanced RISC Machine – common in mobile and embedded)

● RISC-V (Open-source RISC architecture, rising in adoption)

● PowerPC (IBM, used in older Macs, embedded systems)

● MIPS (Used in routers, embedded systems)

8

Parallelisms on CPUs

● Thread parallelism

● Instruction parallelism

● SIMD parallelism
Core1

Task

Core0

Inst0 Inst1

Data0 Data1

9

GPUs

● Grid (kernel) parallelism

● Thread block parallelism

● Thread block cluster parallelism

● Warp parallelism

● Thread parallelism

● Instruction parallelism

● SIMD parallelism

10

NVIDIA GPUs

Before Hopper Since Hopper

11

Accelerators

Different accelerators have different abstractions

Graphcore Sambanova
12

Tile-Based Programming

13

Thread-Based Programming

● Users specify the behavior of each thread

● The number of blocks and threads within each block is controlled on the host

side

14

Behavior of Each Thread

15

Number of Blocks and Threads

16

CUDA Programming Guide

17

The “Problems” with Full CUDA Specification

● Unnecessary to get high performance in common scenarios

● Increasingly complex compute units/memory hierarchy

● Sophisticated user interfaces for tensor core instructions

● Hidden/unspecified behaviors

18

How many of you are familiar with “Programmatic
Dependent Launch”?

Motivation

● Threads within a warp are executed in lock steps
○ This is the behavior of many simulators
○ Though not accurate with “independent thread scheduling”

● Warps within a thread block access the same programmable shared memory
● We can coarsen the execution unit as using warps or thread blocks

Warp0
Warp1

Warp2

Warp3
Synchronization

19

Core Concepts - Tiling/Blocking

● A tile is a block of data elements such as a submatrix or subarray processed

collectively by a couple of threads

● In the context of GPU, tiles are utilized to load chunks of data into shared memory

or registers

○ Coalesced global memory accesses

○ Reduced bank conflicts

○ Matching tensor core layouts

○ Promoting cache utilizing

20

Example - Vector Addition

tile0 tile1 tile2 tile3 tile4

tile0 tile1 tile2 tile3 tile4

tile0 tile1 tile2 tile3 tile4

z = x + y

x

y

z

GPU Block0 GPU Block1 GPU Block2 GPU Block3 GPU Block4 21

Example - Matrix Multiplication

z = x y

tile0 tile1

tile2 tile3

tile0 tile1

tile2 tile3

tile0 tile1

tile2 tile3
x

y

z

GPU Block0

22

Sophisticated Tiling on CPUs

Goto, Kazushige, and Robert A. van de Geijn. "Anatomy of
high-performance matrix multiplication." ACM Transactions on
Mathematical Software (TOMS) 34.3 (2008): 1-25.

23

Sophisticated Tiling on GPUs

DEVELOPING CUDA KERNELS TO PUSH TENSOR CORES TO THE ABSOLUTE LIMIT ON NVIDIA A100
Andrew Kerr, May 21, 2020 24

Automated Transformation - Ideas

25

Automated Transformation - Pros & Cons

✅ Pros

● Developers write simple code; the compiler or transformation tool handles the
complex optimization

⚠ Cons

● Requires sophisticated compilers (e.g., polyhedral frameworks). Not always

available in all toolchains

● Customized code (e.g., fusion) may not be automatically optimized

26

Tile-based Programming Models

● Programmers explicitly divide the work into tiles and write tiled code using

APIs or frameworks

○ Gain fine-grained control

○ Write more flexible and sophisticated kernels

○ Allows for a relatively simple autotuner

27

Tile-based Programming Models

● cuTile
○ NVIDIA GPUs

● NKI
○ AWS Trainium and Inferentia

● Triton
○ AMD, NVIDIA, Intel GPUs, as well as some accelerators

● ThunderKittens, TileLang
○ Research prototypes

28

Triton

29

Survey

● How many of you have heard of Triton before?

● How many of you know that Triton starts from a graduate student project at

Harvard?

30

AI System Software Stack

31

Why Triton?

32

Triton Modules

Triton

Profiler

In-tree Modules

AMD NVIDIA

Interpreter

Out-of-tree Modules

Tools

Backend

IntelLanguage

CPU

Triton-shared
(accelerator)

…

33

Triton Language

● Python-like language designed for high flexibility and performance in deep

learning applications

○ Support tensor interface similar to PyTorch

○ Uses Python-like syntax

● Compared to CUDA/ROCm, Triton simplifies GPU programming

○ Only requiring knowledge that a kernel is divided into multiple blocks (Triton programs)

○ Most underlying details are handled by the compiler

34

Triton vs CUDA

CUDA Triton

Memory Global/Shared/Local Automatic

Parallelism Threads/Blocks/Warps Mostly Blocks*

Tensor Core Manual Automatic

Vectorization .8/.16/.32/.64/.128 Automatic

Async SIMT Support Limited

Device Function Support Support

Using Triton, you only need to know that a program is
divided into multiple blocks

*In Triton 3.3, we added warp specialization so technically not all warps issue the same code
35

SPMD Model

● Each program executes the “same” code
○ Only program ids are different

GPU Triton Programs
36

A Simple Triton Program - Kernel Code

Kernel decorator

Programming model

Creation ops

Memory ops

z: dim0 x dim1 = x: dim0 x dim1 + y: dim0 x dim1

37

A Simple Triton Program - Kernel Launch

z: dim0 x dim1 = x: dim0 x dim1 + y: dim0 x dim1

38

Triton Frontend

math.py

builtin

core.py

rand.py standard.py

libdevice.py

jit

custom

semantic.py

Triton
PythonCode Generator

AST Visit

39

MLIR: Multi-Level IR Compiler Framework

● Building reusable and extensible compiler infrastructure
○ Address software fragmentation

○ Improve compilation for heterogeneous hardware

○ Reduce the cost of building domain specific compilers

● Key concept: Dialects
○ Each dialect is given a unique namespace that is prefixed to each defined

attribute/operation/type

■ For example, the Affine dialect defines the namespace: affine

○ MLIR allows for multiple dialects exist in the same IR

○ A dialect can be converted to another under conversion rules

40

Triton Backends

Triton

TritonCPU

TritonAMDGPU TritonNvidiaGPU

TritonGPU Third-Party

LLVM
41

Step-by-Step Compilation: JIT Compilation

Compile

LaunchHash

Store
Tensors

Constants

Scalars

Cache miss

Cache hit Kernel
Object

Kernel1 Kernel2 Kernel3 Kernel4

CPU

GPU Kernel0

Code

42

Step-by-Step Compilation: TritonIR (TTIR)
tt.func
@matmul_kernel__Pfp32_Pfp32_Pfp32_i32_i32_i32_i32_i32_i32_i32_i32_i32__12c64_13c64_14c64_15c8
(%arg0: !tt.ptr<f32> {tt.divisibility = 16 : i32}, …) {
 %cst = arith.constant dense<true> : tensor<64x64xi1>
 %c64 = arith.constant 64 : i32
 %c0 = arith.constant 0 : i32
 %0 = tt.get_program_id x : i32
 %1 = arith.addi %arg3, %c63_i32 : i32
 %2 = arith.divsi %1, %c64_i32 : i32
 %3 = arith.addi %arg4, %c63_i32 : i32
 %4 = arith.divsi %3, %c64_i32 : i32
 %5 = arith.muli %4, %c8_i32 : i32
 %6 = arith.divsi %0, %5 : i32
 %7 = arith.muli %6, %c8_i32 : i32

Mangled function name

Tensor
Scalar

Triton operation
Arith operation

43

Step-by-Step Compilation: TritonGPU IR (TTGIR)

#blocked = #ttg.blocked<{sizePerThread = [8, 1], threadsPerWarp = [8, 4], warpsPerCTA = [1, 4], order = [0, 1]}>
#blocked1 = #ttg.blocked<{sizePerThread = [1, 8], threadsPerWarp = [4, 8], warpsPerCTA = [4, 1], order = [1, 0]}>
#mma = #ttg.nvidia_mma<{versionMajor = 2, versionMinor = 0, warpsPerCTA = [4, 1], instrShape = [16, 8]}>
module attributes {"ttg.num-ctas" = 1 : i32, "ttg.num-warps" = 4 : i32} {
// CHECK-LABEL: tt.func @load_two_users
 tt.func @load_two_users(%arg0: !tt.ptr<f16> {tt.divisibility = 16 : i32}, %arg1: !tt.ptr<f16> {tt.divisibility = 16 : i32})
-> (tensor<128x16xf32, #mma>, tensor<128x64xf32, #mma>) {
 %cst = arith.constant dense<0> : tensor<1x16xi32, #blocked>
 %cst_0 = arith.constant dense<0> : tensor<128x1xi32, #blocked1>
 %c0_i64 = arith.constant 0 : i64
 %c0_i32 = arith.constant 0 : i32
 %cst_1 = arith.constant dense<0.000000e+00> : tensor<128x16xf32, #mma>
 %cst_2 = arith.constant dense<0.000000e+00> : tensor<128x64xf32, #mma>

Specialized “layouts”

44

Example Layouts - MMA

45

Example Layouts - tcgen05

46

Key Transformation Passes

● Remove layout conversion
○ Rewrite the ConvertLayoutOps to reduce the number of operations and to prefer favorable

layouts like BlockedEncodingAttr layout for "expensive" loads and stores (good for
coalescing) and NvidiaMmaEncodingAttr otherwise (good for tensor ops)

● Accelerate matmul
○ Optimize the input/output layout of dot instructions to make them compatible hardware

accelerators
● Automatic warp specialization

○ Analyze the loops in the kernel and attempt to create a partition schedule so that different
warps handles different code regions

● Pipeline
○ Apply software pipelining to loops in the module based on number of stages. This may convert

some load into asynchronous loads, and multi-buffer the data.

47

More info can be found in:
triton/Dialect/TritonGPU/Transforms/Passes.td

State-of-the-art GEMM Performance

Numbers represents fp8 TFLOPS on Blackwell GB200

1690.079 3659.446 ROOT
├─ 1598.967 429.774 cublas [M=8192, N=8192, K=512]
 │ └─ nan 429.774 nvjet_qqhsq_256x256_128x4_2x1_2cta_v_bz_TNT
├─ 1491.274 460.810 matmul_kernel [M=8192, N=8192, K=512]
├─ 1778.448 386.401 matmul_kernel_persistent [M=8192, N=8192, K=512]
├─ 1887.893 364.001 matmul_kernel_descriptor_persistent [M=8192, N=8192, K=512]
├─ 2178.427 315.455 matmul_kernel_descriptor_persistent_ws [M=8192, N=8192, K=512]
├─ 1972.040 348.469 matmul_kernel_tma_persistent [M=8192, N=8192, K=512]
├─ 2359.637 291.229 matmul_kernel_tma_persistent_ws [M=8192, N=8192, K=512]

48

FLOPS Time

Recent Advances in Tile-Based Programming Models

Paper Conf Target Problems

Rammer: Enabling Holistic Deep Learning Compiler Optimizations with rTasks OSDI’20 Intra- and inter operator scheduling

Roller: Fast and Efficient Tensor Compilation for Deep Learning OSDI’22 Tile-code generation with performance modeling

Welder: Scheduling Deep Learning Memory Access via Tile-graph OSDI’23 Tile scheduling

Cocktailer: Analyzing and Optimizing Dynamic Control Flow in Deep Learning OSDI’23 uTask scheduling

TensorIR: An Abstraction for Automatic Tensorized Program Optimization ASPLOS’23 Block abstraction

Hidet: Task-mapping programming paradigm for deep learning tensor programs ASPLOS’23 Tile with layouts

Graphene: An ir for optimized tensor computations on gpus ASPLOS’23 Tile with layouts

Task-Based Tensor Computations on Modern GPUs PLDI’25 Tile with warp specialization

49

Triton-Puzzles

50

Triton Puzzles

● A set of questions for you to learn Triton from scratch

● You will start with trivial examples and build your way up to real algorithms

like Flash Attention and Quantized neural networks

● These puzzles do not need to run on the GPU since they use the Triton

interpreter

51

Visualization

● One area that learners have trouble with is memory loading and storage

which is critical for speed on low-level devices

● Triton-Viz is a visualizer that illustrates load/store and other triton operations

using a user-friendly GUI

● It also provides simple a statistic summary about operations done by the triton

kernel

52

Get Started

● https://github.com/srush/Triton-Puzzles

53

https://github.com/srush/Triton-Puzzles

Learning Resources

● rkinas/triton-resources: A curated list of resources for learning and exploring

Triton, OpenAI's programming language for writing efficient GPU code.

● gpu-mode/lectures: Material for gpu-mode lectures

● https://discord.gg/gpumode

54

https://github.com/rkinas/triton-resources?tab=readme-ov-file
https://github.com/rkinas/triton-resources?tab=readme-ov-file
https://github.com/gpu-mode/lectures
https://discord.gg/gpumode

