
GVProf: A Value Profiler for
GPU-based Clusters

Keren Zhou1, Yueming Hao2, John Mellor-Crummey1,
Xiaozhu Meng1, and Xu Liu2

1Rice University

2North Carolina State University

10/9/2020 1

Value Profiling

• Values and instructions have invariant, predictable, or

approximate behavior not eliminated at compile time

• Value profiling finds redundant value accesses and attributes

them to source code to pinpoint opportunities for optimizations

such as constant propagation, code specialization, and function

inlining

10/9/2020 2

A Motivating Example

• Rodinia/pathfinder

• The values in the array wall are largely redundant

• Between [1, 10]

• Demoting wall to int8_t

• 1.14x speedup

10/9/2020 3

void dynproc_kernel(int iteration, int *result, int *wall, ...) {
for (int i : iteration) {

result[tx] = shortest + wall[index];
...

}
}

int8_t

GVProf

• Past research uses simulators to study value redundancy in GPU

programs

• High overhead

• Source code recompilation

• Limited to small benchmarks

• GVProf uses binary instrumentation to analyze GPU-accelerated

applications with acceptable overhead and pinpoints value

redundancies with full calling contexts

10/9/2020 4

Outline

• Design Overview

• Methodology

• Measurement

• Analysis

• Case Studies

• Contributions and Work in Progress

10/9/2020 5

Design Overview

• Online Profiler

• CPU

• Application threads for instrumenting kernels, managing buffers, and recording program
calling context and memory objects

• An analysis thread for on-the-fly analysis of redundancy metrics

• GPU

• Callbacks for instrumented GPU instructions

• Offline Analyzer

• Association of redundancy metrics and program structure

10/9/2020 6

GPU Queue
GPU

Callbacks Runtime
Redundancy

Analyzer

GPU

CPU

Application Threads Analysis Thread

CPU Queue

Online Profiler

Offline
Analyzer

Workflow

• GVProf uses NVIDIA’s Sanitizer API to intercept binary load,

kernel launch, and memory allocation

10/9/2020 7

Start ProgramStart Program

Load GPU BinariesLoad GPU Binaries

Allocate GPU MemoryAllocate GPU Memory

Launch KernelLaunch Kernel

End ProgramEnd Program

❑ Create a background analysis thread

to identify value redundancies

❑ Record calling context of memory

allocations

❑ Create snapshots of memory

allocations

❑ Read CFGs of GPU functions

❑ Map each function’s address to a

file offset in a binary

❑ Add instrumentation callbacks

❑ Transfer GPU access records to

the CPU

❑ Enqueue the records for the

background analysis thread

Outline

• Design Overview

• Methodology

• Measurement

• Analysis

• Case Studies

• Contributions and Work in Progress

10/9/2020 8

Spatial Redundancy

• Spatial load redundancy

• A memory load L2 is redundant iff it loads a value v from address A2,
and another memory load L1 loads v from address A1, and A2 and A1
are in the memory range of a data object allocated by a GPU memory
allocation

• Spatial store redundancy

• A memory store S2 is redundant iff it stores a value v to address A2, and
another memory store S1 stores v to address A1, and A2 and A1 are in
the memory range of a data object allocated by a GPU memory
allocation

10/9/2020 9

1 1 1 1 3 4 5

L1 L2 S1 S2

Spatial load redundancy pair

Temporal Redundancy

• Temporal load redundancy

• A memory load L2 is redundant iff it loads a value v from address A, and
the previous memory load L1 from A also loaded v

• Temporal store redundancy

• A memory store S2 is redundant iff it stores a value v to address A, and
the previous memory store S1 also stored v to A

10/9/2020 10

1 1 1 1 3 4 5

1 1 1 1 3 4 5

𝑇1

𝑇2

S1

S2

L1

L2

Temporal store redundancy pair

Approximate Redundancy

• For floating point values, we adjust the length of the mantissa to

compute approximate redundancy
• 𝑣𝑎𝑙𝑢𝑒 = 𝑠𝑖𝑔𝑛 2𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡 ×𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎

• Example
• 85.0000125 = 26 × 01010100000000000000010𝑏

• 85.0 = 26 × 01010100000000000000000𝑏
• 85.0000125 ≈ 85.0 only consider the leading 21 bits of mantissa

10/9/2020 11

sign

𝑓𝑙𝑜𝑎𝑡32

exponent mantissa

1 𝑏𝑖𝑡 8 𝑏𝑖𝑡𝑠 23 𝑏𝑖𝑡𝑠

Outline

• Design Overview

• Methodology

• Measurement

• Analysis

• Case Studies

• Contributions and Work in Progress

10/9/2020 12

Processing Pipeline

• Overlap kernel execution and value analysis

• GPU and application threads communicate via a GPU queue

• Application threads and the analysis thread communicate via a CPU
queue

10/9/2020 13

GPU

Application
Thread

Analysis
Thread

Kernel ExecutionKernel Execution Kernel ExecutionKernel Execution Kernel ExecutionKernel Execution

Redundancy AnalysisRedundancy Analysis Redundancy AnalysisRedundancy Analysis

DispatchDispatch DispatchDispatch

Hierarchical Sampling

• For applications that employ iterative and data parallel models,

behaviors across different GPU kernel invocations and blocks are

similar

• Kernel sampling

• Monitor a subset of kernel invocations with the same invocation context

• Block sampling

• Monitor a subset of a kernel invocation’s thread blocks

10/9/2020 14

GPU Binary Instrumentation and CPU-GPU Communication

• At binary load time, add instrumentation at memory access,

thread block enter, and thread block exit

• When instrumentation executes

• Each warp reserves a slot for a record in the queue with atomicAdd

• Each active thread in a warp writes its entry in the record

• Each warp pushes the record into the queue

• The GPU signals the CPU to drain the queue

• When the queue is full

• When the GPU kernel is complete

10/9/2020 15

Outline

• Design Overview

• Methodology

• Measurement

• Analysis

• Case Studies

• Contributions and Work in Progress

10/9/2020 16

Spatial Redundancy Metrics

• 𝑆𝑅𝑘,𝑜,𝑣 =
𝑆𝐶𝑘,𝑜,𝑣

𝑁𝑘,𝑜

• The spatial redundancy rate 𝑆𝑅 of a data object 𝑜 within kernel 𝑘 with
value 𝑣

• 𝑆𝐶𝑘,𝑜,𝑣
• Spatial redundancy count of a data object 𝑜 within kernel 𝑘 with value 𝑣

• 𝑁𝑘,𝑜
• The total number of memory accesses of a data object o within kernel 𝑘

• Insights
• 100% single value

• Load/Store constant values

• High ratio of single value
• Common computation

10/9/2020 17

• How do we identify data objects using
memory addresses?

• How do we compare and interpret values?

• How do we identify data objects using
memory addresses?

• How do we compare and interpret values?

Identify Data Objects

• The analysis thread and GPU memory allocations are

asynchronous

• Record an allocation snapshot after each memory allocation and free

• Look up the closest allocation snapshot

10/9/2020 18

111

a

Operations

000 222

a b

333

a b

c

333

a b

c 555

b c

777

c

1->Allocate(a)

2->Allocate(b)

3->Allocate(c)

4->Kernel(a, b, c)

Analyze(4)

6->Kernel(b, c)

7->Free(b)

5->Free(a)

Analyze(6)

555

b c

777

c

A
ll

o
c
a
ti

o
n

 S
n

a
p

s
h

o
ts

Identify Memory Access Type

• The raw value obtained for each GPU memory access is a

sequence of binary bits, with no type information

• Unit size
• The length of each element accessed

• Vector size
• The number of elements accessed

• Data type
• Float/Integer

• Use backward slicing to identify memory access types

• The algorithm and a concrete example are described in the paper

10/9/2020 19

STG.128 [R1], R4STG.128 [R1], R4

DADD R4, R11, R12DADD R4, R11, R12

< 𝑓𝑙𝑜𝑎𝑡. 64 >

𝑣𝑒𝑐_𝑠𝑖𝑧𝑒 = 2
𝑢𝑛𝑖𝑡_𝑠𝑖𝑧𝑒 = 64

𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒 = 𝑓𝑙𝑜𝑎𝑡

Temporal Redundancy Metrics

• 𝑇𝑅𝑘,𝑖,𝑣 =
𝑇𝐶𝑘,𝑖,𝑣

𝑁𝑘,𝑖

• The temporal redundancy rate 𝑇𝑅 at instruction 𝑖 within kernel 𝑘 with
value 𝑣

• 𝑇𝐶𝑘,𝑖,𝑣
• Temporal redundancy count at instruction 𝑖 within kernel 𝑘 with value 𝑣

• 𝑁𝑘,𝑖
• The total number of memory accesses at instruction 𝑖 within kernel 𝑘

• Insights
• High redundancy in a loop

• Value not in a register

• High redundancy in device function
• Failed to inline function

10/9/2020 20

• How do we keep track of memory access
records of each thread?

• How do we keep track of memory access
records of each thread?

addr: 0x20

pc: 0xd0

value: 1

Analysis of Temporal Redundancy

• The analysis thread identifies temporal redundancies within each

GPU thread by scanning its access records and keeping only

information about redundancies

10/9/2020 21

addr: 0x20

pc: 0xa0

value: 1

<1, 1> <1, 2> <1, 1>

Thread ID Address PC Value

<1, 1> 0x20 0xa0 1

<1, 2> 0x30 0xb0 1

<1, 2>

Last Seen Table

Source PC Dst PC Value Count

0xa0 0xd0 1 1

Redundant Pairs

addr: 0x30

pc: 0xb0

value: 1

block

exit

Outline

• Design Overview

• Methodology

• Measurement

• Analysis

• Case Studies

• Contributions and Work in Progress

10/9/2020 22

Case Studies

• Platform
• Summit supercomputer
• Up to 64 NVIDIA Volta V100 GPUs

• Benchmark
• Rodinia

• A collection of parallel programs

• Darknet/cuBLAS
• An open-source deep learning framework

• Quicksilver
• A DOE proxy application for solving a dynamic Monte Carlo particle transport

problem

• LAMMPS
• A molecular dynamics code for large-scale materials modeling

10/9/2020 23

Single GPU

Up to 64 GPUs

Evaluation of GVProf

• Measurement overhead

• Up to 1000x without sampling

• 7.5x in average with block sampling

• Sampling accuracy

• 0.7% error in average with block sampling

• Optimizations

• GVProf does not have false positives
• But not all value redundancies can or should be eliminated

• Achieved speedups from 1.02x to 2.42x

10/9/2020 24

Darknet

• 50% spatial load redundancy on shared memory with zeros

• The first layer of YOLOv3-tiny has channel size 16 so that it only requires
a 128x16 tile on shared memory

• cuBLAS 128x32 matrix multiplication kernel uses a 128x32 tile on shared
memory

• Half of the shared memory is filled with zeros

• Achieved 1.60x speedup by employing a fast implementation for

tall-and-thin matrices

10/9/2020 25

Quicksilver

• 20.9% temporal load redundancy in qs_assert to check boundary

conditions
• qs_assert is enclosed in a non-inlined device function invoked in a loop

and checks loop invariant values
• Achieved 1.10x speedup by hoisting the qs_assert out of the device

function

• 30.2% temporal load redundancy in the epilogue of

getReactionCrossSection and macroscopicCrossSection
• The two non-inlined device functions are called in a loop, introducing

redundant local memory store and load operations to spill and restore
unchanged values

• Achieved 1.10x speedup by inlining these two functions into their caller

10/9/2020 26

LAMMPS

• 52.3% spatial redundant stores with zeros in a deep calling

context

• Kokkos resizes an array by allocating a new piece of memory and
initializing it to zero

• Achieved 1.47x speedup by increasing the array growth factor to reduce
the calls to Kokkos::resize()

10/9/2020 27

794: loop at create_atoms.cpp

795: loop at create_atoms.cpp

796: loop at create_atoms.cpp

797: loop at create_atoms.cpp

831: LAMMPS_NS::AtomVecAtomicKokkos::create_atom(int, double*)

795: LAMMPS_NS::AtomVecAtomicKokkos::grow(int)

75: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

232: Kokkos::DualView(…)

679: Kokkos::resize(…)

74: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

73: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

69: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

70: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

71: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

68: LAMMPS_NS::MemoryKokkos::grow_kokkos(…)

Outline

• Design Overview

• Methodology

• Measurement

• Analysis

• Case Studies

• Contributions and Work in Progress

10/9/2020 28

Contributions and Work in Progress

• GVProf highlights
• identifies temporal and spatial value redundancies for both memory

loads and stores;
• provides detailed information to guide optimization, including calling

contexts, data objects, and source code attribution;
• employs various optimizations to reduce its overhead

• Work in progress
• Track value changes regarding the whole program execution

• memset/memcpy

• Inter kernels

• Analyze value patterns for each data object
• Type misuse

• Immutable values

10/9/2020 29

