

GVProf: A Value Profiler for GPU-based Clusters

Keren Zhou¹, Yueming Hao², John Mellor-Crummey¹, Xiaozhu Meng¹, and Xu Liu²

¹Rice University

²North Carolina State University

Value Profiling

- Values and instructions have *invariant*, *predictable*, or *approximate* behavior not eliminated at compile time
- Value profiling finds redundant value accesses and attributes them to source code to pinpoint opportunities for optimizations such as constant propagation, code specialization, and function inlining

A Motivating Example

Rodinia/pathfinder

```
void dynproc_kernel(int iteration, int *result (int *)vall, ...) {
  for (int i : iteration) {
    result[tx] = shortest + wall[index];
    int8_t
    ...
  }
}
```

- The values in the array wall are largely redundant
 - Between [1, 10]
 - Demoting wall to int8_t
 - 1.14x speedup

GVProf

- Past research uses simulators to study value redundancy in GPU programs
 - High overhead
 - Source code recompilation
 - Limited to small benchmarks
- GVProf uses binary instrumentation to analyze GPU-accelerated applications with acceptable overhead and pinpoints value redundancies with full calling contexts

- Design Overview
- Methodology
- Measurement
- Analysis
- Case Studies
- Contributions and Work in Progress

Design Overview

- Online Profiler
 - CPU
 - Application threads for instrumenting kernels, managing buffers, and recording program calling context and memory objects
 - An analysis thread for on-the-fly analysis of redundancy metrics
 - GPU
 - Callbacks for instrumented GPU instructions
- Offline Analyzer
 - Association of redundancy metrics and program structure

Workflow

• GVProf uses NVIDIA's Sanitizer API to intercept *binary load*, *kernel launch*, and *memory allocation*

- Design Overview
- Methodology
- Measurement
- Analysis
- Case Studies
- Contributions and Work in Progress

Spatial Redundancy

- Spatial load redundancy
 - A memory load L2 is redundant *iff* it loads a value v from address A2, and another memory load L1 loads v from address A1, and A2 and A1 are in the memory range of a data object allocated by a GPU memory allocation
- Spatial store redundancy
 - A memory store S2 is redundant *iff* it stores a value v to address A2, and another memory store S1 stores v to address A1, and A2 and A1 are in the memory range of a data object allocated by a GPU memory allocation

Temporal Redundancy

- Temporal load redundancy
 - A memory load L2 is redundant *iff* it loads a value v from address A, and the previous memory load L1 from A also loaded v
- Temporal store redundancy
 - A memory store S2 is redundant *iff* it stores a value v to address A, and the previous memory store S1 also stored v to A

Approximate Redundancy

- For floating point values, we adjust the length of the mantissa to compute approximate redundancy
 - $value = sign 2^{exponent} \times mantissa$

- Example

 - $85.0000125 \approx 85.0$ only consider the leading 21 bits of mantissa

- Design Overview
- Methodology
- Measurement
- Analysis
- Case Studies
- Contributions and Work in Progress

Processing Pipeline

- Overlap kernel execution and value analysis
 - GPU and application threads communicate via a GPU queue
 - Application threads and the analysis thread communicate via a CPU queue

Hierarchical Sampling

- For applications that employ iterative and data parallel models, behaviors across different GPU kernel invocations and blocks are similar
- Kernel sampling
 - Monitor a subset of kernel invocations with the same invocation context
- Block sampling
 - Monitor a subset of a kernel invocation's thread blocks

- At binary load time, add instrumentation at *memory access*, *thread block enter*, and *thread block exit*
- When instrumentation executes
 - Each warp reserves a slot for a record in the queue with atomicAdd
 - Each active thread in a warp writes its entry in the record
 - Each warp pushes the record into the queue
- The GPU signals the CPU to drain the queue
 - When the queue is full
 - When the GPU kernel is complete

- Design Overview
- Methodology
- Measurement
- Analysis
- Case Studies
- Contributions and Work in Progress

Spatial Redundancy Metrics

- $SR_{k,o,v} = \frac{SC_{k,o,v}}{N_{k,o}}$
 - The spatial redundancy rate SR of a data object o within kernel k with value v
 - *SC*_{*k*,*o*,*v*}
 - Spatial redundancy count of a data object *o* within kernel *k* with value *v*
 - N_{k,o}
 - The total number of memory accesses of a data object o within kernel k
- Insights
 - 100% single value
 - Load/Store constant values
 - High ratio of single value
 - Common computation

- How do we identify data objects using memory addresses?
- How do we compare and interpret values?

Identify Data Objects

- The analysis thread and GPU memory allocations are
 asynchronous
 - Record an allocation snapshot after each memory allocation and free
 - Look up the closest allocation snapshot

Identify Memory Access Type

- The raw value obtained for each GPU memory access is a sequence of binary bits, with no type information
 - Unit size
 - The length of each element accessed
 - Vector size
 - The number of elements accessed
 - Data type
 - Float/Integer

- < float. 64 > DADD R4, R11, R12 STG.128 [R1], R4
 - vec_size = 2
 unit_size = 64
 data_type = float
- Use backward slicing to identify memory access types
- The algorithm and a concrete example are described in the paper

Temporal Redundancy Metrics

•
$$TR_{k,i,v} = \frac{TC_{k,i,v}}{N_{k,i}}$$

- The temporal redundancy rate TR at instruction i within kernel k with value v
- $TC_{k,i,v}$
 - Temporal redundancy count at instruction i within kernel k with value v
- N_{k,i}
 - The total number of memory accesses at instruction i within kernel k
- Insights
 - High redundancy in a loop
 - Value not in a register
 - High redundancy in device function
 - Failed to inline function

 How do we keep track of memory access records of each thread?

Analysis of Temporal Redundancy

 The analysis thread identifies temporal redundancies within each GPU thread by scanning its access records and keeping only information about redundancies

- Design Overview
- Methodology
- Measurement
- Analysis
- Case Studies
- Contributions and Work in Progress

Case Studies

- Platform
 - Summit supercomputer
 - Up to 64 NVIDIA Volta V100 GPUs
- Benchmark
 - Rodinia
 - A collection of parallel programs
 - Darknet/cuBLAS
 - An open-source deep learning framework
 - Quicksilver
 - A DOE proxy application for solving a dynamic Monte Carlo particle transport problem
 - LAMMPS

Up to 64 GPUs

Single GPU

• A molecular dynamics code for large-scale materials modeling

Evaluation of GVProf

- Measurement overhead
 - Up to 1000x without sampling
 - 7.5x in average with block sampling
- Sampling accuracy
 - 0.7% error in average with block sampling
- Optimizations
 - GVProf does not have false positives
 - But not all value redundancies can or should be eliminated
 - Achieved speedups from 1.02x to 2.42x

Darknet

- 50% spatial load redundancy on shared memory with zeros
 - The first layer of YOLOv3-tiny has channel size 16 so that it only requires a 128x16 tile on shared memory
 - cuBLAS 128x32 matrix multiplication kernel uses a 128x32 tile on shared memory
 - Half of the shared memory is filled with zeros
- Achieved 1.60x speedup by employing a fast implementation for tall-and-thin matrices

Quicksilver

- 20.9% temporal load redundancy in *qs_assert* to check boundary conditions
 - qs_assert is enclosed in a non-inlined device function invoked in a loop and checks loop invariant values
 - Achieved 1.10x speedup by hoisting the qs_assert out of the device function
- 30.2% temporal load redundancy in the epilogue of getReactionCrossSection and macroscopicCrossSection
 - The two non-inlined device functions are called in a loop, introducing redundant local memory store and load operations to spill and restore unchanged values
 - Achieved 1.10x speedup by inlining these two functions into their caller

LAMMPS

- 52.3% spatial redundant stores with zeros in a deep calling context
 - Kokkos resizes an array by allocating a new piece of memory and initializing it to zero
 - Achieved 1.47x speedup by increasing the array growth factor to reduce the calls to Kokkos::resize()

794: loop at create_atoms.cpp
795: loop at create_atoms.cpp
796: loop at create_atoms.cpp
797: loop at create_atoms.cpp
831: LAMMPS_NS::AtomVecAtomicKokkos::create_atom(int, double*)
795: LAMMPS_NS::AtomVecAtomicKokkos::grow(int)
75: LAMMPS_NS::MemoryKokkos::grow_kokkos()
232: Kokkos::DualView(…)
679: Kokkos::resize(…)
74: LAMMPS_NS::MemoryKokkos::grow_kokkos()
73: LAMMPS_NS::MemoryKokkos::grow_kokkos()
69: LAMMPS_NS::MemoryKokkos::grow_kokkos()
70: LAMMPS_NS::MemoryKokkos::grow_kokkos()
71: LAMMPS_NS::MemoryKokkos::grow_kokkos()
68: LAMMPS_NS::MemoryKokkos::grow_kokkos()

- Design Overview
- Methodology
- Measurement
- Analysis
- Case Studies
- Contributions and Work in Progress

Contributions and Work in Progress

• GVProf highlights

- identifies temporal and spatial value redundancies for both memory loads and stores;
- provides detailed information to guide optimization, including calling contexts, data objects, and source code attribution;
- employs various optimizations to reduce its overhead
- Work in progress
 - Track value changes regarding the whole program execution
 - memset/memcpy
 - Inter kernels
 - Analyze value patterns for each data object
 - Type misuse
 - Immutable values