
A tool for top-down performance analysis of
GPU-accelerated applications

Keren Zhou, Mark Krentel, and John Mellor-Crummey
Department of Computer Science, Rice University

Abstract

We extended Rice University’s HPCToolkit to measure
and analyze GPU-accelerated applications. Our tool has
the following key innovations:
•A measurement substrate that employs a wait-free
data structure to coordinate measurement and
attribution between each application thread and a
GPU monitor thread.

•An approach to reconstruct an approximate calling
context tree for GPU computations from flat GPU
PC samples.

•A method to derive GPU performance metrics from
PC samples and attribute them at all levels in a
heterogeneous calling context.

Background

•A trace view shows a series of events that happen over
time on each process, thread, and GPU stream.

•A profile view collapses out the time dimension and
correlates performance metrics with program contexts.

•Most GPU performance tools, including nvprof, Nsight
Systems, Nsight Compute, TAU, and Allinea Map, only
provide a trace view for GPU API calls and/or a flat
profile view.

•HPCToolkit attributes performance metrics to calling
contexts that span both CPUs and GPUs.

• In the Figure below, we show HPCToolkit’s
heterogeneous calling context for a fully optimized
GPU kernel that has 28 device functions.

����������	��
����

���������
��

����������	��
����

�����

������ �������������
��

�����
���
�

Figure: Quicksilver is a GPU-accelerated proxy application for LLNL’s
Mercury - a Monte Carlo neutron transport code.

Wait-free Communication

•We designed a data structure that supports wait-free
communication of measurement and correlation records
between the GPU monitor thread and each application
thread.

Worker-Monitor Communication

8/5/2019 8

main

f0

cudaLaunchKernel

pc0

f1

pc1 pc2

Produced Correlation Channel

Produced Measurement Channel

Application Thread Produce

Monitor Thread Consume Application Thread Consume 

Monitor Thread Produce

Program Order

Consumed Correlation Channel

Consumed Measurement Channel

Figure: Interactions between the GPU monitor thread and application
threads. pc0, pc1, and pc2 denote PC samples

GPU Calling Context Tree
Reconstruction

•We first construct a static call graph based on function
symbols and call instructions.

•We transform the call graph into a calling context tree
by splitting call edges and cloning called procedures.

•We use a heuristic method to apportion samples to
procedures called from multiple call sites.

�����������	

�����������
 ������������

������������

��������	


��������	
 ��������	


��������	


���������	�
��������

4 ����� 6 �����

����� �
�

, �
�

�
4

4 
 6
� 0.4 ����� �

�

, �
�

�
6

4 
 6
� 0.6

�����������	

�����������
 ������������

������������

��������	


��������	
 ��������	


� �����	


����
�������
�����������

4 ����� 6 �����

������������

�������	


Figure: A procedures’s costs are computed using the number of samples
at each call site

Metrics Derivation

•Some performance metrics cannot be collected in the
same pass with PC samples.

•Nsight-compute runs nine passes to collect all of these
metrics for a GPU kernel.

•Our tool estimates important performance metrics based
on PC samples and kernel statistics, including SM
efficiency, SM busy rate, SM active ratio, occupancy,
warp issue rate, IPC, issued instruction counts,
instruction throughput, etc.

Case Studies

•We have used our tool to analyze HPC applications on
the Summit supercomputer whose compute nodes are
equipped with IBM POWER9 processors and NVIDIA
Volta GPUs.

•We identified three costly memory copies in Laghos from
the bottom-up profile view.

•Applying optimizations based on calling context and
performance increases Laghos’ GPU code by 25%.

������

������

������

Figure: Laghos is a DOE mini-app that solves the time-dependent
Euler equation of compressible gas dynamics.

•By combining PC sampling measurements with
instruction mix analysis, our tool provides the metrics
necessary to construct a Roofline model.

•We optimized Nekbone to 84% of the peak performance
limited by memory bandwidth.

1/11/2020 103

1 2 4 8 16 32

64

8192

1/21/4 FLOPS/Byte

Peak Performance (7065 GFLOPS)

Achieved Performance (1663 GFLOPS)

Theoretical Performance (1980 GFLOPS)

128

256

512

1024

2048

4096

GFLOPS

Arithmetic Intensity = 2.2

Figure: Nekbone is a lightweight subset of Nek5000 that mimics the
computational characteristics of Nek5000, a high-order Navier-Stokes
solver based on the spectral element method.

Next Steps

•We are continuing work on our tools with the aim of
turning measurement data and metrics into high-level
guidance for performance tuning.

•We have begun to apply our tool to MPI-based HPC
applications and machine learning applications.


