

FASTEN: Fast GPU-accelerated Segmented Matrix Multiplication for Heterogeneous Graph Neural Networks

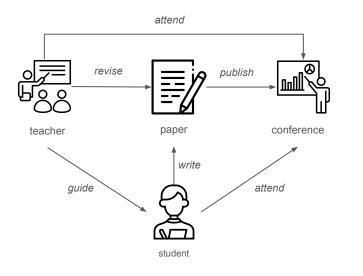
Keren Zhou*, Karthik Ganapathi Subramanian, Po-Hsun Lin, Matthias Fey, Binqian Yin, and Jiajia Li kzhou6@gmu.edu

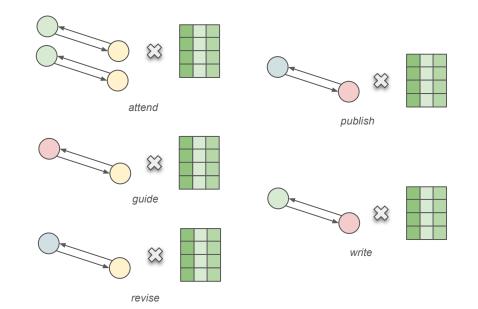
Modeling Graph Structure

Graphs **Graph Neural Networks Applications** Learning Modeling Relationships Feature Feature Molecule Learnable Weight Social Network i > 0? Feature No Feature x+=2; Yes уG i++: x-=2:

Control Flow

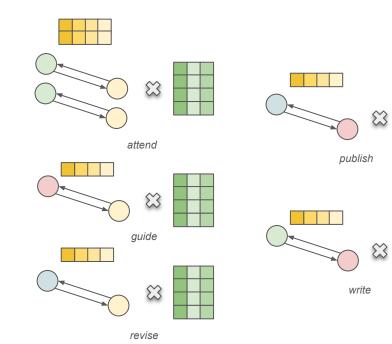
Heterogeneous Graphs





Research Network

Segmented Matmul



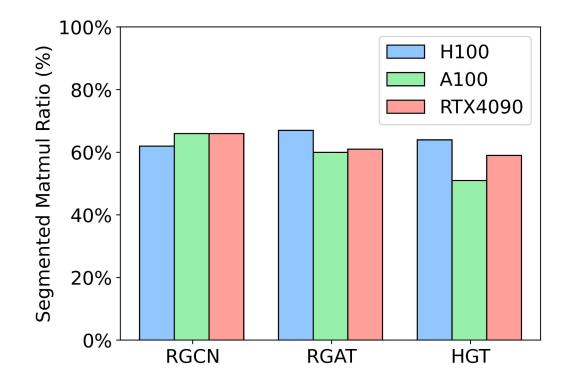
ŝ I_0 W_0 \mathfrak{i} I_3 \mathfrak{A} I_1 W_1 \mathfrak{i} I_4 I_2 W_2

 $O_{\tau} = I_{\tau} \times W_{\tau}$

 W_3

 W_4

Segmented Matmul Takes Significant Time



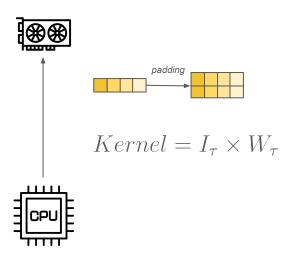
Existing Implementations

- Launch kernels in sequence
- High launch overhead
- Low GPU utilization

$$\begin{split} & \bigoplus_{Kernel_0} = I_0 \times W_0 \\ & Kernel_1 = I_1 \times W_1 \\ & Kernel_2 = I_2 \times W_2 \\ & & & & & & \\ & & & & & \\$$

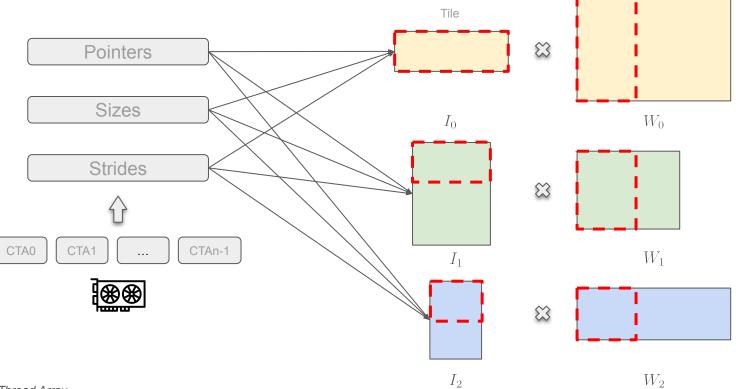
Loop over Matmul

- Pad inputs to the same shape
- Extra compute
- Extra memory



Batched Matmul

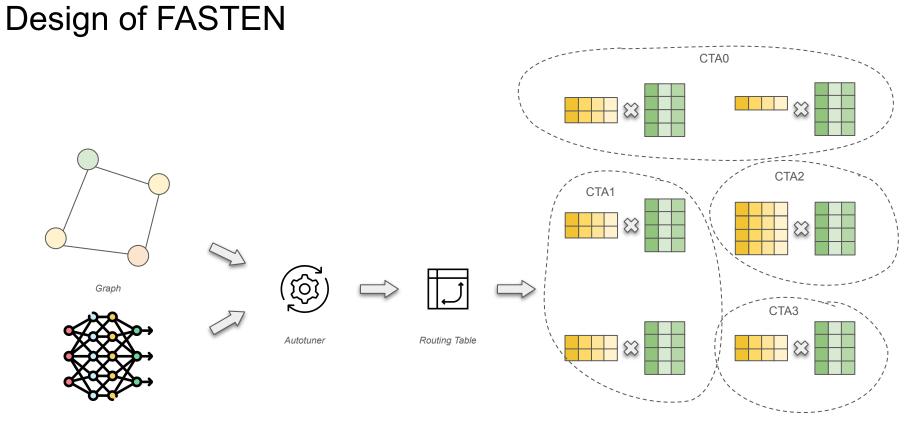
Grouped Matmul



CTA: Cooperative Thread Array

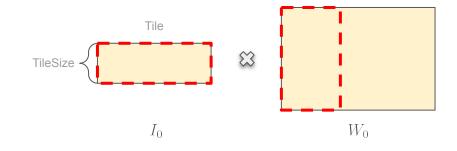
Inefficiencies of Grouped Matmul

- Grouped matmul uses many *indirect memory access* to auxiliary data structures
- The round-robin scheduling mechanism does not take *data locality* into account (e.g., W₀=W₁)
- Grouped matmul overlooks the tile sizes of input and weight matrices assigned to each CTA, causing *workload imbalance*



Neural Network

Routing Table



Typeldx	Start	End
tO	0	10
t1	10	70
t2	70	100

TileSize=32

Typeldx	Start	End	Next
tO	0	10	NULL
t1	10	42	
t1	42	70	NULL <
t2	70	100	NULL

Routing Table Optimization

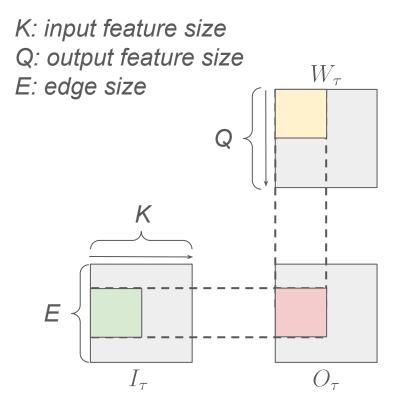
- Divide tiles into *large* and *small* tiles
- A large tile (i.e., a block)
 consists of *B* small tiles with
 size divisible by TileSize
- Small tiles can have indivisible tile sizes

Typeldx	Start	End	Next	Large?	
tO	0	10	NULL	Ν	
t1	10	42	NULL	Y	
t1	42	74	NULL	N/A	Merge
t1	74	106	NULL	N/A	B=4
t1	106	138	NULL	N/A	

Read one row to get B tiles

Basic Algorithm

Typeldx	Start	End	Next
tO	0	10	NULL
t1	10	42	_
t1	42	70	NULL 🔫
t2	70	100	NULL



Optimization

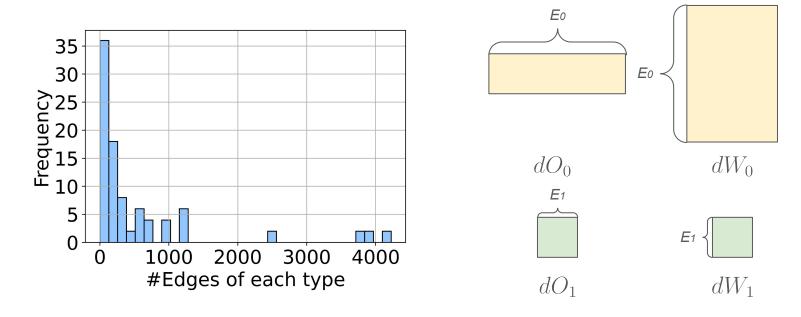
- Algorithm
 - Dynamic tiling
 - Tile reordering
 - Persistent processing

• Implementation

- Pipeline asynchronous load and (asynchronous) compute
- Prefetch shared memory data
- Tensor core TF32
- Register blocking

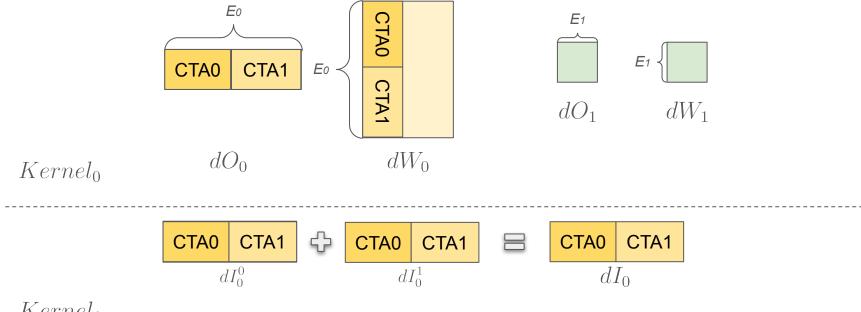
Backward Observation

• Significant imbalance of edge types (e.g., E₀ vs E₁)



Backward Optimization - 3D Parallelization

Split the K dimension across multiple CTAs and accumulate



 $Kernel_1$

Performance Modeling

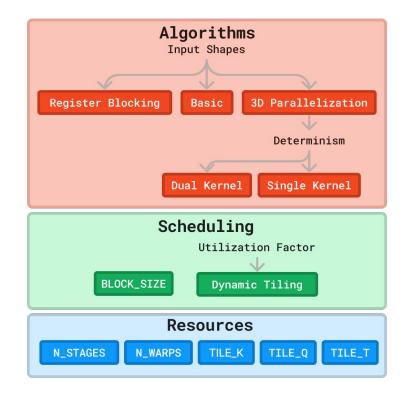
```
Occupancy-
Utilization←
Time_{total} = N_{waves} \times Time_{wave}
      Time<sub>indexing</sub>*
       Time<sub>load</sub>←
      Time<sub>compute</sub>-
       Time<sub>store</sub>←
```

Parallel Efficiency: The ratio of ideal number of waves to N_{waves}

Compute Efficiency: The ratio of $Time_{compute}$ to $Time_{wave}$

Multi-level Autotuning

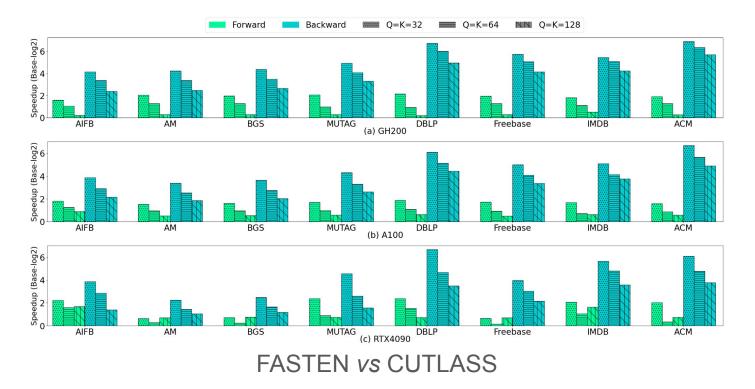
- Configuration keys
 - Average number of edges
 - Standard deviation of edges
 - Feature size
- Configuration pruning
 - Resource-based
 - Heuristic-based
 - Shape-based
 - Efficiency-based
 - Algorithm-based



Experiments - Setup

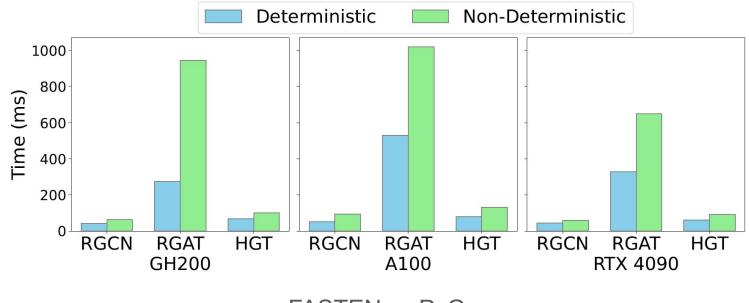
- GH200
 - 96GB GPU Memory, 132 SMs, 989 TF32 TFLOP/s, 4TB/s Bandwidth
- A100 SXM
 - 80GB GPU Memory, 108 SMs, 156 TF32 TFLOP/s, 2TB/s Bandwidth
- RTX4090
 - 24GB GPU Memory, 128 SMs, 82.6 TF32 TFLOPS, 1TB/s Bandwidth
- Eight heterogeneous graphs
 - AIFB, AM, BGS, MUTAG, DBLP, Freebase, IMDB, ACM

Experiments - Operators



Forward: 1.11x-5.21x speedup; Backward: 2.07x-117.54x speedup

Experiments - End-to-end



FASTEN vs PyG

Up to 3.53x speedup

Takeaway

- Operator optimization is critical for heterogeneous graphs
- Key innovations
 - Tile-based routing table
 - 3D Parallelization
 - Multi-level autotuning
- <u>Deep-Learning-Profiling-Tools/fasten (github.com)</u>