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Heterogeneous Graphs
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Segmented Matmul Takes Significant Time



● Pad inputs to the same shape
● Extra compute
● Extra memory

● Launch kernels in sequence
● High launch overhead
● Low GPU utilization

Existing Implementations

Loop over Matmul

padding

Batched Matmul



Grouped Matmul
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Inefficiencies of Grouped Matmul

● Grouped matmul uses many indirect memory access to auxiliary data 

structures

● The round-robin scheduling mechanism does not take data locality into 

account (e.g., W0=W1)

● Grouped matmul overlooks the tile sizes of input and weight matrices 

assigned to each CTA, causing workload imbalance



Design of FASTEN
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Routing Table

TypeIdx Start End

t0 0 10

t1 10 70

t2 70 100

…

TypeIdx Start End Next

t0 0 10 NULL

t1 10 42

t1 42 70 NULL

t2 70 100 NULL

…

TileSize=32

TileSize

Tile



Routing Table Optimization

● Divide tiles into large and 

small tiles

● A large tile (i.e., a block) 

consists of B small tiles with 

size divisible by TileSize

● Small tiles can have 

indivisible tile sizes

Read one row to get B tiles

TypeIdx Start End Next Large?

t0 0 10 NULL N

t1 10 42 NULL Y

t1 42 74 NULL N/A

t1 74 106 NULL N/A

t1 106 138 NULL N/A

Merge
B=4



Basic Algorithm

TypeIdx Start End Next

t0 0 10 NULL

t1 10 42

t1 42 70 NULL

t2 70 100 NULL

…

K

E

Q

K: input feature size
Q: output feature size
E: edge size 



Optimization

● Algorithm
○ Dynamic tiling

○ Tile reordering

○ Persistent processing

● Implementation
○ Pipeline asynchronous load and 

(asynchronous) compute

○ Prefetch shared memory data

○ Tensor core TF32

○ Register blocking



Backward Observation

● Significant imbalance of edge types (e.g., E0 vs E1) 
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Backward Optimization - 3D Parallelization

● Split the K dimension across multiple CTAs and accumulate
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Performance Modeling

Compute Efficiency: 
The ratio of                     to 

Parallel Efficiency: 
The ratio of ideal number of 
waves to 



Multi-level Autotuning

● Configuration keys
○ Average number of edges

○ Standard deviation of edges

○ Feature size

● Configuration pruning
○ Resource-based

○ Heuristic-based

○ Shape-based

○ Efficiency-based

○ Algorithm-based



Experiments - Setup

● GH200
○ 96GB GPU Memory, 132 SMs, 989 TF32 TFLOP/s, 4TB/s Bandwidth 

● A100 SXM
○ 80GB GPU Memory, 108 SMs, 156 TF32 TFLOP/s, 2TB/s Bandwidth

● RTX4090
○ 24GB GPU Memory, 128 SMs, 82.6 TF32 TFLOPS, 1TB/s Bandwidth

● Eight heterogeneous graphs
○ AIFB, AM, BGS, MUTAG, DBLP, Freebase, IMDB, ACM



Experiments - Operators

Forward: 1.11x-5.21x speedup; Backward: 2.07x-117.54x speedup

FASTEN vs CUTLASS



Experiments - End-to-end

FASTEN vs PyG

Up to 3.53x speedup



Takeaway

- Operator optimization is critical for heterogeneous graphs

- Key innovations
- Tile-based routing table

- 3D Parallelization

- Multi-level autotuning

- Deep-Learning-Profiling-Tools/fasten (github.com)

https://github.com/Deep-Learning-Profiling-Tools/fasten

