
FASTEN: Fast GPU-accelerated
Segmented Matrix Multiplication for

Heterogeneous Graph Neural Networks
Keren Zhou*, Karthik Ganapathi Subramanian, Po-Hsun Lin,

Matthias Fey, Binqian Yin, and Jiajia Li
kzhou6@gmu.edu

Modeling Graph Structure

Graphs

i > 0?

Control Flow

Molecule

Social Network

x+=2;
i++;

x-=2;

Yes

No

Applications Graph Neural Networks

Feature

Learnable
Weight

Feature

Feature
Feature

Modeling
Learning

Relationships

Heterogeneous Graphs

Research Network

student

attend

attend

revise

guide

publish

teacher paper conference

attend
publish

guidewrite

write

revise

Segmented Matmul

attend
publish

guide

write

revise

Segmented Matmul Takes Significant Time

● Pad inputs to the same shape
● Extra compute
● Extra memory

● Launch kernels in sequence
● High launch overhead
● Low GPU utilization

Existing Implementations

Loop over Matmul

padding

Batched Matmul

Grouped Matmul

Pointers

Sizes

Strides

CTA0 CTA1 … CTAn-1

CTA: Cooperative Thread Array

Tile

Inefficiencies of Grouped Matmul

● Grouped matmul uses many indirect memory access to auxiliary data

structures

● The round-robin scheduling mechanism does not take data locality into

account (e.g., W0=W1)

● Grouped matmul overlooks the tile sizes of input and weight matrices

assigned to each CTA, causing workload imbalance

Design of FASTEN

Graph

Neural Network

Autotuner Routing Table

CTA0

CTA1
CTA2

CTA3

Routing Table

TypeIdx Start End

t0 0 10

t1 10 70

t2 70 100

…

TypeIdx Start End Next

t0 0 10 NULL

t1 10 42

t1 42 70 NULL

t2 70 100 NULL

…

TileSize=32

TileSize

Tile

Routing Table Optimization

● Divide tiles into large and

small tiles

● A large tile (i.e., a block)

consists of B small tiles with

size divisible by TileSize

● Small tiles can have

indivisible tile sizes

Read one row to get B tiles

TypeIdx Start End Next Large?

t0 0 10 NULL N

t1 10 42 NULL Y

t1 42 74 NULL N/A

t1 74 106 NULL N/A

t1 106 138 NULL N/A

Merge
B=4

Basic Algorithm

TypeIdx Start End Next

t0 0 10 NULL

t1 10 42

t1 42 70 NULL

t2 70 100 NULL

…

K

E

Q

K: input feature size
Q: output feature size
E: edge size

Optimization

● Algorithm
○ Dynamic tiling

○ Tile reordering

○ Persistent processing

● Implementation
○ Pipeline asynchronous load and

(asynchronous) compute

○ Prefetch shared memory data

○ Tensor core TF32

○ Register blocking

Backward Observation

● Significant imbalance of edge types (e.g., E0 vs E1)

E0

E0

E1

E1

Backward Optimization - 3D Parallelization

● Split the K dimension across multiple CTAs and accumulate

E0

E0

E1

E1CTA0 CTA1

C
TA

0
C

TA
1

CTA0 CTA1 CTA0 CTA1 CTA0 CTA1

Performance Modeling

Compute Efficiency:
The ratio of to

Parallel Efficiency:
The ratio of ideal number of
waves to

Multi-level Autotuning

● Configuration keys
○ Average number of edges

○ Standard deviation of edges

○ Feature size

● Configuration pruning
○ Resource-based

○ Heuristic-based

○ Shape-based

○ Efficiency-based

○ Algorithm-based

Experiments - Setup

● GH200
○ 96GB GPU Memory, 132 SMs, 989 TF32 TFLOP/s, 4TB/s Bandwidth

● A100 SXM
○ 80GB GPU Memory, 108 SMs, 156 TF32 TFLOP/s, 2TB/s Bandwidth

● RTX4090
○ 24GB GPU Memory, 128 SMs, 82.6 TF32 TFLOPS, 1TB/s Bandwidth

● Eight heterogeneous graphs
○ AIFB, AM, BGS, MUTAG, DBLP, Freebase, IMDB, ACM

Experiments - Operators

Forward: 1.11x-5.21x speedup; Backward: 2.07x-117.54x speedup

FASTEN vs CUTLASS

Experiments - End-to-end

FASTEN vs PyG

Up to 3.53x speedup

Takeaway

- Operator optimization is critical for heterogeneous graphs

- Key innovations
- Tile-based routing table

- 3D Parallelization

- Multi-level autotuning

- Deep-Learning-Profiling-Tools/fasten (github.com)

https://github.com/Deep-Learning-Profiling-Tools/fasten

