Tools for top-down
performance analysis of GPU-
accelerated applications

Keren Zhou, Mark Krentel, and John Mellor-Crummey
Department of Computer Science

Rice University

GPU Performance Tools

 Trace view

» A series of events that happen over time on each
process, thread, and GPU stream

* Profile view

A correlation of performance metrics with program
contexts

« Existing GPU performance tools

« GPU vendors

» Nsight Systems, Nsight Compute, nvprof, ROCProfiler, Intel
VTune

* Third parties
« TAU, VampirTrace, Allinea Map

Problems with Existing Tools

 Existing performance tools are ill-suited for
analyzing complex programs because they
lack a comprehensive profile view to analyze

» Sophisticated CPU calling contexts
 AGPU API (e.g., cudaMemcpy) invoked in different places

» Sophisticated GPU calling contexts

« OpenMP Target, Kokkos, and RAJA generate code with
many small procedures

* At best, existing tools only attribute runtime
cost to a flat profile view of functions executed
on GPUs

HPCToolkit Profile View

= NuclearData.cc £
| 246// Return the total cross section for this Energy group

247 HOST DEVICE

245 double NuclearData::getReactionCrossSection |

249 unsigned int reactIndex, unsigned int isotopelIndex, unsigned int group)

gs_assert (isotopeIndex < _isotopes.size());
g5 assert(reactIndex < isotopeslisotopelIndex]. species[0]. reactions.si

return isotopes[isotopelIndex]. species[0]. reactions[reactInde

254 }

% Top-down view 2 | %, Bottom-up viewi_ﬁ. Flat view|
a5 | foo| W B A -~

Scope GINS:Sum (1) GINS:STL_ANY:Sum (I)
loop at main.cc: 159 1.07e+11 100 % 9.83e+10 100 %
loop at main.cc: 163 1.07e+11 100 % 9.83e+10 100 %
B 193: [1] CycleTrackingKernel(MonteCarlo*, int, ParticleVault®, ParticleVault*) 1.07e+11 100 % 9.83e+10 100 %
By 127: _ device_stub_ Z19CycleTrackingKernelP10MonteCarloiP13ParticleVaultS2_(MonteCarlo*, int, Parti 1.07e+11 100 % 5.83=+10 100 %
CPU Calling Context B 14: [l cudalaunchKernel <char> 1.07e+11 100 % 5.83e+10 100 %
GPU APl Node Br 209 <gpu kernel> 1.07e+11 100 % 9.83e+10 100 %
B> 174: CycleTrackingKernel{MaonteCarlo?*, int, ParticleVault*, ParticleVault®) 1.07e+11 100 % 9.83=+10 100 %
B 132: CycleTrackingGuts(MonteCarlo* int, ParticleVault*, ParticleVault*) 1.06e+11 100.0 9.82e+10 100.0
loop at CycleTracking.cc: 118 8.590=+10 B3.5% 8.08e+10 B2.2%
B 63: CallisionEvent(MonteCarlo* MC_Particle&, unsigned int) 4.599=+10 46.9% 4. 49=+10 45.7%
11 inlined from QS_Vector.hh: 94 3.76=+10 25.3% 3.34=+10 24.0%
loop at GQS_Vector.hh: 94 3.61e+10 33.9% 3.20e+10 32.5%
[I] inlined from CollisionEvent.cc: 71 3.58e+10 33.6% 3.17e+10 32.3%
loop at CollisionEvent.cc: 71 3.42=+10 32.1% 3.03=+10 30.9%
GPU Loops and Inline Functions By 73: macroscopicCrossSection{MonteCarlo?, int, int, int, int, int) 3.11e+10 29.2% 2.78e+10 28.3%
[I1 inlined from MacroscopicCrossSection.cc: 45 2.57e+10 24.1% 2.31le+10 23.5%
By 41: NuclearData:getReactionCrossSection{unsigned int, unsigned 1.6%9=+10 15.9% 1.56e+10 15.9%
GPU Calling Context [1] inlined from NuclearData.cc: 194 9.36e+09 B.8% 8.70e+09 B8.9%
GPU Hotspot NuclearData.cc: 253 5.06e+09 B.5% 8.44e+09 P €%

8/21/2020 4 ">

Outline

* Overview

* Performance Measurement

* Performance Metrics Attribution
* Performance Analysis

» Case Studies

« SumMmary

8/21/2020 5

HPCToolkit Overview

NAVAIB] VAN OpenCL g OpenMP

HPCToolkit GPU Core

1%
8/21/2020 6 4 >

HPCToolkit Workflow

GPU API Wrappers

: : inari profile
compile & link ~ GPY binaries axaciitlon call path
profile
[hpcrun]

source
code

optimized
binary

el | program
y structure
[hpecstruct]

" nvdisasm | instruction mMix
presentation interpret profile |l
[hpcviewer/ database correlate w/ source
hpctraceviewer] [hpcprof/hpcprof-mpi]

associate instruction mix w/ source
approximate GPU calling context trees

8/21/2020 7

Measurement and Attribution Challenges

 GPU measurement collection
« Multiple application threads launching kernels to a GPU

« A monitor thread reads measurements and attributes
them to the corresponding application threads

 GPU API correlation in CPU calling context tree

« Thousands of GPU invocations, including kernel
launches, memory copies, and synchronizations in
large-scale applications

* GPU metrics attribution
* Read line map and DWARF in heterogenous binaries

* |ldentify loop nests
» Reconstruct GPU calling context

Outline

* Performance Measurement

* Performance Metrics Attribution
* Performance Analysis

» Case Studies

« SumMmary

8/21/2020 9

GPU Performance Measurement

« Two categories of threads

» Application Threads (N per process)

« Launch kernels, move data, and synchronize GPU calls
* Monitor Thread (7 per process)

« Monitor GPU events and collect GPU measurements

* Interaction

» Create correlation: An application thread T creates a
correlation record when it launches a kernel and tags
the kernel with a correlation ID C, notifying the monitor
thread that C belongsto T

o Attribute measurements: The monitor thread collects
measurements associated with C and communicates
measurement records back to thread T

Coordinating Measurements

« Communication channels: wait-free unordered
stack groups

A private stack and a shared stack used by two
threads
* Producer PUSH(CAS): push an item on a shared stack

« Consumer STEAL(XCHG): steal the contents of the
shared stack, push the contents onto a private stack

« Consumer POP: pop an item from the private stack

* Wait-free because PUSH fails at most once when
a concurrent thread STEALSs contents of the

shared stack

Interactions between the GPU monitor

thread and application threads

Monitor Thread Produce

2D

« Application Thread Produce
I

"

main
I |
! I
/\ I I
! |
fo 1 I I
/ I
/ |
A 4 . 7/ / ’l
cudaLaunchKernel -~ |
v _j ,l' U
pcO pc pc2 Monitor Thread Consume ' Application Thread Consume
v =—____ - _’

8/21/2020

Produced Correlation Channel

Consumed Correlation Channel

Consumed Measurement Channel

Produced Measurement Channel

- ==+ Program Order

GPU API Correlation with CPU
Calling Context

* Unwind a call stack from each API invocation,
iIncluding kernel launch, memory copy, and
synchronization

* |nitial approach:

* |dentify the function enclosing each call site in the
call stack using a global shared map

 Problem:

« Applications have deep call stacks and large
codebase
« Nyx: up to 60 layers and 400k calls
« Laghos: up to 40 layers and 100k calls

Fast Unwinding

* Refined approach:
 Memoize common call path prefixes

« Temporally-adjacent samples in complex
applications often share common call path prefixes

« Employ eager (mark bits) or lazy (tramopoline)
marking to identify LCA of call stack unwinds

» Avoid costly access to mutable concurrent data

« Cache unwinding recipes in a per thread hash table
« Avoid duplicate unwinds

* Filter CUDA Driver APIs within CUDA Runtime APIs

Outline

 Performance Metrics Attribution
* Performance Analysis
e Case Studies

« SumMmary

8/21/2020 15 "N

GPU Metrics Attribution

* Attribute metrics to flat PCs at runtime
* Relocate each GPU function in a CUBIN so that
they do not overlap
* Aggregate metrics to lines
« Read .debug_lineinfo section if available

» Aggregate metrics to loops
 nvdisasm —poff —cfg for all valid functions
 Parse dot files to data structures for Dyninst
« Use Dyninst ParseAPI to identify loops

GPU Calling Context Tree

* Problem

« Unwinding call stacks on GPU is costly for each GPU
thread

* NVIDIA's CUPTI does not provide an unwinding API

« Challenges
« GPU functions may be invoked from different call sites
* Need to decide how to attribute costs to each call site

« Solution

« Reconstruct GPU calling context tree from flat
instruction samples and static GPU call graph

Reconstruct Approximate GPU
Calling Context Tree

 Construct static call graph
* Link call instructions with corresponding functions

» Construct dynamic call graph
* Propagate call instructions to all possible call sites
* Prune functions with no samples or calls

 Transform call graph to calling context tree
« Apportion each function’'s samples based on
samples of its incoming call sites

» See the paper for how we handle recursive
calls

GPU Calling Context Tree Example

* D is split into D" and D" based on (0x30, 1) and
(0x40, 2)

A, A,

(0x10, 1) (0x20, 1) © M

B, C, —) B, C,

(OXMZ) (0x30, 1) l (0x40, 2) l

« w

/ \\ DI Dn
/// D3 \\\\ 1 2
/

N
N
4 N

1 2
Ratio(B,D) =m= 1/3 Ratio(C,D) =m= 2/3

Outline

* Performance Analysis
» Case Studies

« SumMmary

8/21/2020 20

CPU Importance

* CPUimpoRTANCE!
Ratio of a procedure’s time to the whole execution time

Vo (CPUTivE = SUM(GPU_ APIrg) (\| | CPUnie
o CPUrimE "~)| [EXECUTION g

Ratio of a procedure’s pure CPU time.
If more time is spent on GPU than CPU, the ratio is setto O

¢ GPU_APITIME:

 KERNELtvE: cudaLaunchKernel, cuLaunchKernel
* MEMCPYtvg: cudaMemcpy, cudaMemcpyAsync
« MEMSETrmg: cudaMemset

8/21/2020 21

GPU API Importance

* GPU_APIjmpoRTANCE

GPU_API e
SUM(GPU_API(yg)

Consider the importance of the memory copy to all the GPU time

* Find which type of GPU APl is the most
expensive

« Kernel: optimize specific kernels with PC Sampling
profiling

« Other APls: apply optimizations based on calling
context

8/21/2020 22

Instruction Mix

* Map opcodes and modifiers to instruction
classes
* Memory ops
* class.[memory hierarchy].width
« Compute ops
* class.[precision].[tensor].width

« Control ops
* class.control.type

Metrics Derivation

 Problem

 GPU PC sampling cannot be used in the same
pass with metric collection

* Nsight-compute runs nine passes to collect multiple
metrics for a small kernel

« Our approach

« Derive multiple metrics using PC sampling and
other activity records

* e.g., instruction throughput, scheduler issue rate, SM
active ratio

» See the paper for how we derive metrics

Outline

e Case Studies

« SumMmary

8/21/2020 25

Case Studies

« Setup

« Summit compute node: Power9+Volta V100
* module load hpctoolkit/2020.03.01
* module load cuda/10.1.243

 Case studies
« RAJAPerf Suite

» Performance benchmark for a template-based GPU programming
model

« Laghos

« A DOE mini-app that solves the time-dependent Euler equation of
compressible gas dynamics

 Nekbone

» Asubset of kernels from Nek5000, a high-order Navier-Stokes
solver based on the spectral element method

RAJAPerf Suite

» Assess the accuracy of our GPU call graph
reconstruction

« Compare our call count approximation with
exact call counts from NVIDIA's NVBIt

« Compiled with “—~G” to avoid function inlining

Test Case Unique Call Paths Error
Basic_INIT_VIEW1D_OFFSET 9 0
Basic_ REDUCE3_INT 113 0.03
Stream_DOT 60 0.006

Stream_TRIAD 0
Apps_PRESSURE
Apps_FIR
Apps_DEL_DOT_VEC_2D

Apps_VOL3D

AWl OO |O | O

0
0
0
0

Laghos-CUDA

* Pinpoint performance problems in profile view
by importance metrics

« CPU takes 80% execution time

« mfem::LinearForm::Assemble only has CPU code, taking
60% execution time

« Memory copies can be optimized by different
methods based on their calling context

« Use memory copy counts and bytes to determine if using
pinned memory with help

« Eliminate conditional memory copies
« Fuse memory copies into kernel code

Laghos-CUDA

* Original time: 32.9s
* 11.3s on GPU computation and memory copies

* Optimized time: 30.9s

* 9.0s on GPU computation and memory copies
» Overall improvement: 6.4%

* GPU code section improvement: 25.6%

8/21/2020 29

Laghos-RAJA

* Pinpoint synchronization

« Kernel launch in CUDA is asynchronous, but
Laghos uses RAJA synchronous kernel launch

» Use asynchronous RAJA kernel launch

* Bad compiler generated code with RAJA
template wrapper

 rMassMultAdd<3,4>: RAJA version has 4x STG
instructions as the CUDA version. ¥4 STG
Instructions within a loop use the same address.

« Store temporary values in local variables

Laghos-RAJA

* Original time: 41.0s
* 19.47s on GPU computation and memory copies

* Optmizied time: 32.2s

* 10.8s on GPU computation and memory copies
* Overall improvement: 27.3%

* GPU code section improvement: 80.2%

8/21/2020 31

Nekbone

 Associate PC samples with GPU calling context,
loops, and lines

» Use instruction mix to provide essential metrics for
generating a roofline model

* Problems and optimizations

« Memory throttling: high frequency global memory
requests do not always hit cache. +shared memory

 Memory dependency: compiler (-O3) does not reorder
global memory read properly to hide latency. +reorder
global memory read

« Execution dependency:. complicated assembly code
for integer division. +precompute reciprocal to simplify
division

Nekbone Improvement and Error Estimates

* Overall improvement: +34%

 Estimate errors: the first one +8% because of
GPU instruction predicates

1800
1600

1400
£ 100
@)

800

600

400

200

baseline +shared +reorder +reciprocal
mPC SAMPLING mNSIGHT-COMPUTE m®mHAND

GFL

o

8/21/2020 33 N

Nekbone Roofline Analysis

» 83% of peak performance

* Could obtain +19% by fusing multiply and add on
the assembly level

GFLOPS |

8192 Peak Performance (7065 GFLOPS)

4096 :igi///'
Theoretical Performance (1980 GFLOPS)
2048 :

Achieved Performance (1663 GFLOPS)

1024
512
256
128
64 ‘
8/21/2020 1/4 12 1 2 4 8 16 32 FLOPS/Byte y

Arithmetic Intensity = 2.2

Outline

e Summary

8/21/2020 35

Summary

 HPCToolkit pinpoints performance problems for
both large-scale applications and individual kernels

« HPCToolkit provides insights for finding problems
in compiler-generated GPU code, resource usage,
synchronization, parallelism level, instruction
pipeline, and memory access patterns

« HPCToolkit collects measurement data efficiently
« CUDA/10.1
« Without PC sampling: comparable with nvprof
« With PC sampling: 6x speedup

GPU Calling Context Tree Example

A

(0x10, 1)Nio, 1)

B,

Co

(OXSONOI 2)
(0x50, 1)

0

l (0x60, 1)
(0x70, 0)

Fs

8/21/2020

=

Az

(0x10, 1Nio, 1)

Bs Co

(msoNo, 2)

D2 Es SCG

(0x70, oi

Fs

Az

(0x10, 11

(msoNo, 2)

Ds

(0x70, 11

Fs3

Bs

A

(0x10, 1i

Es SCE SCG D: Ex

Bs

(0x30, fgmo, 2)

D2E> SCG’

(0x70, 1/? (0x70, 2/?
F

F1

37

Memoizing common call path prefixes

Call path sample Eager LCA

return address
return address

return address

return address
return address

i instruction pointer
 mark frame RAs
while unwinding

Eager LCA « return from marked
Arnold & Sweeny, frame clears mark
IBM TR. 1999. new calls create

unmarked frame RAs
* mark frame RA during
Lazy LCA next unwind

Froydetal, 1CSO5. » prior marked frames
are common prefix

Lazy LCA

e

mark innermost frame RA

return from marked

frame moves mark

new calls create

unmarked frames

mark frame RA during

next unwind

prior marked frame
indicates common prefix 33

Step 1: Construct Static Call Graph

* Link call instructions with corresponding

functions
A
0Ox10 0x30 0x50
“ | \
B C D
| |
Ox70 0Ox80

é/
}
0x30

Step 2: Construct Dynamic Call
Graph

* Challenge
 Call instructions are sampled (Unlike gprof)

* Assumptions
« |f a function is sampled, it must be called
somewhere
* If there are no call instruction samples for a
sampled function, we assign each potential call site
one call sample

Step 2: Construct Dynamic Call
Graph

 Assign call instruction samples to call sites

 Mark a function with T if it has instruction
samples, otherwise F

Ar
0x10, 0x30, 0x50,
- l N
Be Cr D-
l l
0x70 0x80

E;
|
0x30,

Step 2: Construct Dynamic Call
Graph

* Propagate call instructions

At the same time change function marks
* Implemented with a queue

Ar
0x10, 0x30, 0x50,
- l N
B; C, D-
l l
0x70, 0x80;

E;
|
0x30,

Step 2: Construct Dynamic Call
Graph

* Prune functions with no samples or calls

» Keep call instructions

Ar

0x10, 0x30, 0x50,
/ l
B, C,
l l
0x70, 0x80;

E;
|
0x30,

Step 3: Identify Recursive Calls

* |dentify SCCs in call graph

* Link external calls to SCCs and unlink calls

. A
inside SCCs %\
0x10, 0x30, 0x50,
v }
B, Cr
} }
0x70, 0x80,
L
SCC
}
Er

Step 4: Transform Call Graph to
Calling Context Tree

* Apportion each function’s samples based on
samples of its incoming call sites

Ar
0x10, 0x30, 0x50,
/ l
B, o
l l
0x70, 0x80;
l !
SCC SCC’
: !
= =

PC Sampling Mental Model

» Stall reason: When an instruction is sampled,
its stall reason (if any) is recorded

» Latency sample: If all warps on a scheduler are
stalled when a sample is taken, the sample is
marked as a latency sample

S5 S,

S, S, [] S, S, B stalled insts

B B] Eligible insts

Latency Sample Issued insts
P 2P 3P 4P 5P 6P : Sampled insts

8/21/2020 S1-S4: schedulers 1P-6P: sampling cycles "

Analysis with PC Sampling

 Each stream

: : Round Robin Sampling
multiprocessor is sampled .

individually EEBE EE B
 Active warps are uniformly

distributed to warp Warp Warp

schedulers Scheduler1 Scheduler2
« Samples are taken in a

fixed number of cycles

HE HE
» \olta V100
« scheduler_id = warp _index
% 4 Warp Warp

Scheduler3 Scheduler4
« 16 warp slots on each

scheduler

Stream Multiprocessor
8/21/2020 47

Metrics Derivation Example-IPC

 Total Samples (S): 6
» Latency Samples (S;): 4

SSL 2

-3
* |PC:. 1 X MIN (actwe_warps, warp_schedulers)

* Issue Rate (/):

s, S,
S, S, [] S, S, B stalled insts
[] H B] Eligible insts
L] H B B B B Issued insts
P 2P 3P 4P 5P 6P : Sampled insts

S1-S4: schedulers 1P-6P: sampling cycles

8/21/2020 48

Estimate Error

« GPUs are not always running at the maximum
clock rate

* Actual average clock rate: C

 Maximum clock rate: C

. C
 Estimate error: € = =

