
Tools for top-down 
performance analysis of GPU-

accelerated applications
Keren Zhou, Mark Krentel, and John Mellor-Crummey

Department of Computer Science

Rice University

8/21/2020 1



GPU Performance Tools

• Trace view
• A series of events that happen over time on each 

process, thread, and GPU stream

• Profile view
• A correlation of performance metrics with program 

contexts

• Existing GPU performance tools
• GPU vendors

• Nsight Systems, Nsight Compute, nvprof, ROCProfiler, Intel 
VTune

• Third parties
• TAU, VampirTrace, Allinea Map

8/21/2020 2



Problems with Existing Tools

• Existing performance tools are ill-suited for 
analyzing complex programs because they 
lack a comprehensive profile view to analyze

• Sophisticated CPU calling contexts
• A GPU API (e.g., cudaMemcpy) invoked in different places

• Sophisticated GPU calling contexts
• OpenMP Target, Kokkos, and RAJA generate code with 

many small procedures 

• At best, existing tools only attribute runtime 
cost to a flat profile view of functions executed 
on GPUs

8/21/2020 3



HPCToolkit Profile View 

8/21/2020 4

CPU Calling Context
GPU API Node

GPU Calling Context

GPU Loops and Inline Functions

GPU Hotspot



Outline

• Overview

• Performance Measurement

• Performance Metrics Attribution

• Performance Analysis

• Case Studies

• Summary

8/21/2020 5



HPCToolkit Overview

HPCToolkit GPU Core

NVIDIA

CUPTI Sanitizer

AMD

ROCTracer

Intel

Level Zero

OpenCL OpenMP

8/21/2020 6



HPCToolkit Workflow

8/21/2020 7

GPU API Wrappers

nvdisasm

GPU binaries

associate instruction mix w/ source
approximate GPU calling context trees

instruction mix



Measurement and Attribution Challenges

• GPU measurement collection
• Multiple application threads launching kernels to a GPU
• A monitor thread reads measurements and attributes 

them to the corresponding application threads 

• GPU API correlation in CPU calling context tree
• Thousands of GPU invocations, including kernel 

launches, memory copies, and synchronizations in 
large-scale applications

• GPU metrics attribution
• Read line map and DWARF in heterogenous binaries 
• Identify loop nests
• Reconstruct GPU calling context

8/21/2020 8



Outline

• Overview

• Performance Measurement

• Performance Metrics Attribution

• Performance Analysis

• Case Studies

• Summary

8/21/2020 9



GPU Performance Measurement

• Two categories of threads
• Application Threads (N per process)

• Launch kernels, move data, and synchronize GPU calls

• Monitor Thread (1 per process)
• Monitor GPU events and collect GPU measurements

• Interaction
• Create correlation: An application thread T creates a 

correlation record when it launches a kernel and tags 
the kernel with a correlation ID C, notifying the monitor 
thread that C belongs to T

• Attribute measurements: The monitor thread collects 
measurements associated with C and communicates 
measurement records back to thread T

8/21/2020 10



Coordinating Measurements 

• Communication channels: wait-free unordered 
stack groups

• A private stack and a shared stack used by two 
threads

• Producer PUSH(CAS): push an item on a shared stack

• Consumer STEAL(XCHG): steal the contents of the 
shared stack, push the contents onto a private stack

• Consumer POP: pop an item from the private stack

• Wait-free because PUSH fails at most once when 
a concurrent thread STEALs contents of the 
shared stack

8/21/2020 11



Interactions between the GPU monitor 
thread and application threads

8/21/2020 12

main

f0

cudaLaunchKernel

pc0

f1

pc1 pc2

Produced Correlation Channel

Produced Measurement Channel

Application Thread Produce

Monitor Thread Consume Application Thread Consume 

Monitor Thread Produce

Program Order

Consumed Correlation Channel

Consumed Measurement Channel



GPU API Correlation with CPU
Calling Context

• Unwind a call stack from each API invocation, 
including kernel launch, memory copy, and 
synchronization

• Initial approach:
• Identify the function enclosing each call site in the 

call stack using a global shared map

• Problem:
• Applications have deep call stacks and large 

codebase
• Nyx: up to 60 layers and 400k calls

• Laghos: up to 40 layers and 100k calls

8/21/2020 13



Fast Unwinding

• Refined approach:
• Memoize common call path prefixes

• Temporally-adjacent samples in complex 
applications often share common call path prefixes

• Employ eager (mark bits) or lazy (tramopoline) 
marking to identify LCA of call stack unwinds

• Avoid costly access to mutable concurrent data

• Cache unwinding recipes in a per thread hash table

• Avoid duplicate unwinds

• Filter CUDA Driver APIs within CUDA Runtime APIs

8/21/2020 14



Outline

• Overview

• Performance Measurement

• Performance Metrics Attribution

• Performance Analysis

• Case Studies

• Summary

8/21/2020 15



GPU Metrics Attribution

• Attribute metrics to flat PCs at runtime
• Relocate each GPU function in a CUBIN so that 

they do not overlap

• Aggregate metrics to lines
• Read .debug_lineinfo section if available

• Aggregate metrics to loops
• nvdisasm –poff –cfg for all valid functions

• Parse dot files to data structures for Dyninst

• Use Dyninst ParseAPI to identify loops

8/21/2020 16



GPU Calling Context Tree

• Problem
• Unwinding call stacks on GPU is costly for each GPU 

thread

• NVIDIA’s CUPTI does not provide an unwinding API

• Challenges
• GPU functions may be invoked from different call sites

• Need to decide how to attribute costs to each call site

• Solution
• Reconstruct GPU calling context tree from flat 

instruction samples and static GPU call graph

8/21/2020 17



Reconstruct Approximate GPU 
Calling Context Tree

• Construct static call graph
• Link call instructions with corresponding functions

• Construct dynamic call graph
• Propagate call instructions to all possible call sites

• Prune functions with no samples or calls

• Transform call graph to calling context tree
• Apportion each function’s samples based on 

samples of its incoming call sites

• See the paper for how we handle recursive 
calls

8/21/2020 18



GPU Calling Context Tree Example

8/21/2020 19

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x20, 1)

C1B3

D3

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x20, 1)

C1B3

D’1 D’’2

𝑅𝑎𝑡𝑖𝑜(𝐵, 𝐷) =
1

1 + 2
= 1/3 𝑅𝑎𝑡𝑖𝑜(𝐶, 𝐷) =

2

1 + 2
= 2/3 

• D is split into D’ and D’’ based on (0x30, 1) and 
(0x40, 2)



Outline

• Overview

• Performance Measurement

• Performance Metrics Attribution

• Performance Analysis

• Case Studies

• Summary

8/21/2020 20



CPU Importance

• :

• :
• ୘୍୑୉: cudaLaunchKernel, cuLaunchKernel

• ୘୍୑୉: cudaMemcpy, cudaMemcpyAsync

• ୘୍୑୉: cudaMemset

• …

8/21/2020 21

୘୍୑୉ ୘୍୑୉

୘୍୑୉

୘୍୑୉

୘୍୑୉

Ratio of a procedure’s time to the whole execution time

Ratio of a procedure’s pure CPU time. 
If more time is spent on GPU than CPU, the ratio is set to 0



GPU API Importance

•

• Find which type of GPU API is the most 
expensive

• Kernel: optimize specific kernels with PC Sampling 
profiling

• Other APIs: apply optimizations based on calling 
context

8/21/2020 22

୘୍୑୉

୘୍୑୉

Consider the importance of the memory copy to all the GPU time



Instruction Mix

• Map opcodes and modifiers to instruction 
classes

• Memory ops
• class.[memory hierarchy].width

• Compute ops
• class.[precision].[tensor].width

• Control ops
• class.control.type

• …

8/21/2020 23



Metrics Derivation

• Problem
• GPU PC sampling cannot be used in the same 

pass with metric collection

• Nsight-compute runs nine passes to collect multiple 
metrics for a small kernel

• Our approach
• Derive multiple metrics using PC sampling and 

other activity records
• e.g., instruction throughput, scheduler issue rate, SM 

active ratio

• See the paper for how we derive metrics

8/21/2020 24



Outline

• Overview

• Performance Measurement

• Performance Metrics Attribution

• Performance Analysis

• Case Studies

• Summary

8/21/2020 25



Case Studies

• Setup
• Summit compute node: Power9+Volta V100
• module load hpctoolkit/2020.03.01 
• module load cuda/10.1.243

• Case studies
• RAJAPerf Suite

• Performance benchmark for a template-based GPU programming 
model

• Laghos
• A DOE mini-app that solves the time-dependent Euler equation of 

compressible gas dynamics

• Nekbone
• A subset of kernels from Nek5000, a high-order Navier-Stokes 

solver based on the spectral element method

8/21/2020 26



RAJAPerf Suite

• Assess the accuracy of our GPU call graph 
reconstruction

• Compare our call count approximation with 
exact call counts from NVIDIA’s NVBit

• Compiled with “–G” to avoid function inlining

8/21/2020 27

Test Case Unique Call Paths Error

Basic_INIT_VIEW1D_OFFSET 9 0

Basic_REDUCE3_INT 113 0.03

Stream_DOT 60 0.006

Stream_TRIAD 5 0

Apps_PRESSURE 6 0

Apps_FIR 5 0

Apps_DEL_DOT_VEC_2D 3 0

Apps_VOL3D 4 0



Laghos-CUDA

• Pinpoint performance problems in profile view 
by importance metrics

• CPU takes 80% execution time
• mfem::LinearForm::Assemble only has CPU code, taking 

60% execution time

• Memory copies can be optimized by different 
methods based on their calling context

• Use memory copy counts and bytes to determine if using 
pinned memory with help

• Eliminate conditional memory copies

• Fuse memory copies into kernel code

8/21/2020 28



Laghos-CUDA

• Original time: 32.9s
• 11.3s on GPU computation and memory copies

• Optimized time: 30.9s
• 9.0s on GPU computation and memory copies

• Overall improvement: 6.4%

• GPU code section improvement: 25.6%

8/21/2020 29



Laghos-RAJA

• Pinpoint synchronization
• Kernel launch in CUDA is asynchronous, but 

Laghos uses RAJA synchronous kernel launch

• Use asynchronous RAJA kernel launch

• Bad compiler generated code with RAJA 
template wrapper

• rMassMultAdd<3,4>: RAJA version has 4x STG 
instructions as the CUDA version. ¼ STG 
instructions within a loop use the same address.

• Store temporary values in local variables

8/21/2020 30



Laghos-RAJA

• Original time: 41.0s
• 19.47s on GPU computation and memory copies

• Optmizied time: 32.2s
• 10.8s on GPU computation and memory copies

• Overall improvement: 27.3%

• GPU code section improvement: 80.2%

8/21/2020 31



Nekbone

• Associate PC samples with GPU calling context, 
loops, and lines

• Use instruction mix to provide essential metrics for 
generating a roofline model

• Problems and optimizations
• Memory throttling: high frequency global memory 

requests do not always hit cache. +shared memory
• Memory dependency: compiler (-O3) does not reorder 

global memory read properly to hide latency. +reorder 
global memory read

• Execution dependency: complicated assembly code 
for integer division. +precompute reciprocal to simplify 
division 

8/21/2020 32



Nekbone Improvement and Error Estimates

• Overall improvement: +34%

• Estimate errors: the first one +8% because of 
GPU instruction predicates

8/21/2020 33

0

200

400

600

800

1000

1200

1400

1600

1800

baseline +shared +reorder +reciprocal

G
F

LO
P

S

PC SAMPLING NSIGHT-COMPUTE HAND



Nekbone Roofline Analysis

• 83% of peak performance
• Could obtain +19% by fusing multiply and add on 

the assembly level

8/21/2020 341 2 4 8 16 32

64

8192

1/21/4 FLOPS/Byte

Peak Performance (7065 GFLOPS)

Achieved Performance (1663 GFLOPS)

Theoretical Performance (1980 GFLOPS)

128

256

512

1024

2048

4096

GFLOPS

Arithmetic Intensity = 2.2



Outline

• Overview

• Performance Measurement

• Performance Metrics Attribution

• Performance Analysis

• Case Studies

• Summary

8/21/2020 35



Summary

• HPCToolkit pinpoints performance problems for 
both large-scale applications and individual kernels

• HPCToolkit provides insights for finding problems 
in compiler-generated GPU code, resource usage, 
synchronization, parallelism level, instruction 
pipeline, and memory access patterns

• HPCToolkit collects measurement data efficiently
• CUDA/10.1

• Without PC sampling: comparable with nvprof

• With PC sampling: 6x speedup

8/21/2020 36



GPU Calling Context Tree Example

8/21/2020 37

(0x10, 1)

(0x30, 1) (0x40, 2)

(0x50, 1)

(0x60, 1)

A2

(0x20, 1)

(0x70, 0)

C0B3

D2 E3

F3

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x20, 1)

(0x70, 0)

C0B3

D2 E3

F3

SCC5

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x70, 1)

B3

D3 E3

F3

SCC6

(0x10, 1)

(0x30, 1) (0x40, 2)

A2

(0x70, 1/3)

B3

D1 E1

F1

SCC
(0x70, 2/3)

D’2 E’2

F’2

SCC’42



Memoizing common call path prefixes

38

Call path sample

instruction pointer

return address

return address

return address

return address

return address

instruction pointer

return address

return address

instruction pointer

return address

return address

return address

return address

Eager LCA

• mark frame RAs 
while unwinding

• return from marked 
frame clears mark

• mark frame RA during 
next unwind 

• prior marked frames 
are common prefix

• new calls create 
unmarked frame RAs

Lazy LCA

• mark innermost frame RA 
• return from marked 

frame moves mark

• mark frame RA during 
next unwind 

• prior marked frame 
indicates common prefix

• new calls create 
unmarked frames

Eager LCA
Arnold & Sweeny, 
IBM TR, 1999.

Lazy LCA
Froyd et al, ICS05.8/21/2020



Step 1: Construct Static Call Graph

• Link call instructions with corresponding 
functions

8/21/2020 39

B

0x70

E

0x30

A

0x10 0x50

C

0x80

0x30

D



Step 2: Construct Dynamic Call 
Graph

• Challenge
• Call instructions are sampled (Unlike gprof)

• Assumptions
• If a function is sampled, it must be called 

somewhere

• If there are no call instruction samples for a 
sampled function, we assign each potential call site 
one call sample

8/21/2020 40



Step 2: Construct Dynamic Call 
Graph

• Assign call instruction samples to call sites

• Mark a function with T if it has instruction 
samples, otherwise F

8/21/2020 41

B

0x70

E

0x30

A

0x10 0x50

C

0x80

0x30

D

1

2

T

F F F

T

2 1



Step 2: Construct Dynamic Call 
Graph

• Propagate call instructions
• At the same time change function marks

• Implemented with a queue

8/21/2020 42

B

0x70

E

0x30

A

0x10 0x50

C

0x80

0x30

D

1

2

T

T T F

T

2 1

1 1



Step 2: Construct Dynamic Call 
Graph

• Prune functions with no samples or calls

• Keep call instructions 

8/21/2020 43

B

0x70

E

0x30

A

0x10 0x50

C

0x80

0x301

2

T

T T

T

2 1

1 1



Step 3: Identify Recursive Calls

• Identify SCCs in call graph

• Link external calls to SCCs and unlink calls 
inside SCCs

8/21/2020 44

B

0x70

E

0x30

A

0x10 0x50

C

0x80

0x301

2

T

T T

T

2 1

1 1

SCC



Step 4: Transform Call Graph to 
Calling Context Tree

• Apportion each function’s samples based on 
samples of its incoming call sites

8/21/2020 45

B

0x70

E

0x30

A

0x10 0x50

C

0x80

0x301

1

T

T T

T

2 1

1 1

SCC

E’

0x301

T

SCC’



PC Sampling Mental Model

8/21/2020 46

𝑆ଵ 𝑆ଶ

𝑆ଷ 𝑆ସ

𝑆ଵ 𝑆ଶ Stalled insts

Eligible insts

Issued insts

Sampled insts𝑃 2𝑃 3𝑃 4𝑃 5𝑃 6𝑃

• Stall reason: When an instruction is sampled, 
its stall reason (if any) is recorded

• Latency sample: If all warps on a scheduler are 
stalled when a sample is taken, the sample is 
marked as a latency sample

𝑆ଵ-𝑆ସ: schedulers 1𝑃-6𝑃: sampling cycles

Latency Sample



Analysis with PC Sampling

8/21/2020 47

• Each stream 
multiprocessor is sampled 
individually

• Active warps are uniformly 
distributed to warp 
schedulers

• Samples are taken in a 
fixed number of cycles

• Volta V100
• scheduler_id = warp_index

% 4
• 16 warp slots on each 

scheduler

Warp
Scheduler1

Round Robin Sampling

Warp
Scheduler2

Warp
Scheduler3

Warp
Scheduler4

Stream Multiprocessor



Metrics Derivation Example-IPC

• Total Samples ( ): 6

• Latency Samples ( ): 4

• Issue Rate ( ): ಽ

• IPC: 

8/21/2020 48

𝑆ଵ 𝑆ଶ

𝑆ଷ 𝑆ସ

𝑆ଵ 𝑆ଶ Stalled insts

Eligible insts

Issued insts

Sampled insts𝑃 2𝑃 3𝑃 4𝑃 5𝑃 6𝑃

𝑆ଵ-𝑆ସ: schedulers 1𝑃-6𝑃: sampling cycles



Estimate Error

• GPUs are not always running at the maximum 
clock rate

• Actual average clock rate: 

• Maximum clock rate: 

• Estimate error: 

8/21/2020 49


