
Profiling and Debugging GPU-
accelerated AI Applications

Keren Zhou
George Mason University

kzhou6@gmu.edu

AI Applications

AI System Software Stack

4

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● PyTorch/fx

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d

AI Code Transformation Workflow

5

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d

a b

cmm

add

e

AI Code Transformation Workflow

6

Device

● GPU

● CPU

● FPGA

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d

a b

cmm

add

e

__global__
void mm(float *a, float *b,
float *c) {

float *a_tile;
float *b_tile;
…

}

AI Code Transformation Workflow

7

Kernel

● CUDA

● HIP

● OpenCL

Graph

● XLA/HLO

● TVM/Relay

● TorchDynamo

Model

● PyTorch

● TensorFlow

● JAX

Device

● GPU

● CPU

● FPGA

a = torch.randn(64, 32)
b = torch.randn(32, 64)
c = torch.randn(64, 64)
d = torch.mm(a, b)
e = c + d

a b

cmm

add

e

__global__
void mm(float *a, float *b,
float *c) {

float *a_tile;
float *b_tile;
…

}

AI Code Transformation Workflow

Understanding Hidden Issues is Difficult

● Cross stack performance issues

○ Framework is not able to schedule/fuse operators

● CPU-GPU interaction

○ GPUs wait for CPUs or communication

● Compiler fail to generate optimal code

○ Deep learning compilers are not perfect

Framework

Operator

Devices

Profiling Tools

● Linux Perf/gprof

○ CPU cycles, cache misses, and other hardware metrics

● HPCToolkit

○ CPU and GPU profiling with static binary analysis

● Nsight Systems/Intel VTune/AMD RocTracer

○ Profiling GPU events

Profile and Trace Views

Debugging Tools

● GDB/LLDB/PDB

○ Supports step-through execution, breakpoints, and watchpoints

● Valgrind

○ Memory leak detection

● CUDA-GDB

○ GPU instruction and memory inspection

Outline

● Introduction

● DeepContext

● Triton

○ Profiler

○ Interpreter

○ Visualizer

● Ongoing Work

DeepContext

@PyTorchConference’24

A Cross-Platform and Cross-Framework Profiler

● GPU vendor-provided tools cannot be applied across platforms

○ Nsight Systems

○ RocTracer

● Framework native tools cannot be applied across frameworks

○ PyTorch profiler

○ JAX profiler

A Context-Aware Profiler

● DeepContext obtains contexts from multiple-sources and concatenates them

together to support informed decisions

○ Python

○ Framework

○ C++/C

○ GPU API

○ GPU device

Implementation

Case Study

● PyTorch without context correlation

Case Study

● PyTorch with context correlation

Triton

Triton

● A Python-like language

● A JIT compiler

● A PyTorch backend

● A set of MLIR dialects

● An organization

● A community

Why Triton?

Why Triton?

Presenter Notes
Presentation Notes
 A fun fact is that Triton is named after the nucleus of the Tritium atom, which is a nod to (nuclear) fusion. You can interpret the new logo as such: two red neutrons, one gray proton, and an electron orbiting around

Triton Modules

Trit on

P rofile r

In-tree Modules

AMD NVIDIA

Int e rpre t e r

Out -of -tree Modules

Tools

Backend

Int e lLanguage

CP U

Trit on-shared
(acce le ra t or)

…

Triton Language

● Python-like language designed for high flexibility and performance in deep

learning applications

○ Support tensor interface similar to PyTorch

○ Uses Python-like syntax

● Compared to CUDA/ROCm, Triton simplifies GPU programming

○ Only requiring knowledge that a kernel is divided into multiple blocks (Triton programs)

○ Most underlying details are handled by the compiler

A Simple Triton Program

Kerne l decorat or

P rogram m ing m ode l

Creat ion ops

Mem ory ops

z: dim0 x dim1 = x: dim0 x dim1 + y: dim0 x dim1

Triton Profiler

Proton (A Profiler for Triton)

● Provide a quick, intuitive, and simple way to check kernel performance

○ Open source

○ Multiple vendor GPUs

○ Flexible metrics collection

■ Hardware metrics

■ Software metrics

○ Call path profiling

Call Path Profiling

P yt hon Cont ext

Shadow Cont ext

Proton vs Nsight Systems vs Nsight Compute
Tool Nsys NCU P rot on

Overhead Up t o 3 x Up t o 10 0 0 x Up t o 1.5 x

P rofile s ize Large Large Tiny (<1MB)

P rofiling
t arge t s NVIDIA GP Us , CP Us NVIDIA GP Us NVIDIA and AMD GP Us

Granularit y Kerne ls Kerne ls and ins t ruct ions Kerne ls and ins t ruct ions

Met rics
GP U t im e

GP U ut iliza t ion
CP U sam ples

A com ple t e se t of m e t rics
from hardware count e rs

GP U t im e
GP U ins t ruct ion

sam ples
Use r-de fined m e t rics

Trit on
hooks N/ A N/ A Support

User Interface

● Lightweight source code instrumentation

○ Profile start/stop/finalize

○ Scopes

○ Hooks

● Command line

○ python - m proton main.py

○ proton main.py

Start/Stop/Finalize Profiling

● Profile only interesting regions

○ proton.start(profile_name: str) - > session_id: int

○ proton.finalize()

● Skip some regions, but accumulate to the same profile

○ session_id = proton.start(...)

○ proton.deactive(session_id)

○ … # region skipped

○ proton.activate(session_id)

Scopes

● A user-defined region with semantic information

○ Initialization

○ Forward

○ Backward

● with proton.scope(name)

Met rics

● Hardware metrics
○ Come from profiling substrates (e.g., CUPTI)

■ Kernel time

■ Instruction samples

● User-defined metrics
○ Come from users

■ Flops

■ Bytes

■ Tokens

Triton Hook

● A way to compute and associate metrics with each Triton kernel launch
○ @triton.jit(launch_metadata=metadata_fn)

● metadata_fn is a callback function that
○ Takes three input arguments

■ Grid
■ Metadata

● warps, stages, shared
■ Args

○ Returns a dictionary containing
■ Renamed kernel name
■ Other metric names and values

Instruction Sampling

● For large functions, we need fine-grained insights about which

lines/IRs/instructions are expensive

● Instruction sampling is an experimental feature we’re developing to support

this goal

○ It’s called pc sampling using NVIDIA’s terminology

Instruction Sampling

● Sample an instruction on each active GPU SM every N cycles

● Each instruction is associated with a stall reason if available

○ Why the instruction was not issued

● “Low overhead” with regard to each kernel’s GPU time

● Available on NVIDIA, AMD and Intel GPUs

Viewer

● proton - viewer a call path visualization tool

● Load json data into pandas

● Render it on terminal using hatchet

○ LLNL-Hatchet: A flexible package for performance data analysis

○ Hatchet can also convert the format into other formats such as flamegraph

● proton - viewer - h for more information

https://llnl-hatchet.readthedocs.io/en/latest/

Case Study: Matmul

● We use scopes to annotate

○ Matmul shapes: matmul_M_N_K

○ Autotuned configurations: <autotune>

● We use hooks to annotate

○ Grid dimensions

○ Number of warps

○ Number of stages

Case Study: Matmul

Triton Interpreter

Debugging Triton Programs is Still Not Easy

● Launch parallel programs instances

○ kernel[(x, y, z,)](params…)

● Calculate offsets

○ tl.arange(0, N)[None, :] // H * stride

● Access multi-dimensional tensors with masks and others

○ tl.load(offsets, masks, others)

Triton Interpreter

● A debugger that allows users to debug Triton programs as if they were

debugging standard Python programs on the CPU

○ Attach pdb to step through each statement interactively

○ Print tensor values as multidimensional arrays for better visualization

○ Serialize the execution of multiple Triton programs for easier debugging

Frontend without the Interpreter

m at h.py

built in

core .py

rand .py s t andard .py

libdevice .py

jit

cus t om

sem ant ic.py

Trit on
P yt honCode Generat or

Trit on IR

IR Builde r

AST Visit

Backend

IRs and Binary

Frontend with the Interpreter

m at h.py

built in

core .py

rand .py s t andard .py

libdevice .py

jit

cus t om

sem ant ic.py

Trit on
P yt honInt e rp re t e r

Int e rpre t e r Builde r

Exec

Num py Execut or

Case Study: Vector Addition

Case Study: Vector Addition Without Interpreter

Case Study: Vector Addition With Interpreter

Triton Visualizer

@SIGCSE’25

Education

● How to educate the next-generation engineers and scientists on Triton

knowledge?

● Parallel programming is hard

○ Though Triton has simplified the abstraction

● Performance optimization and correctness debugging are even harder

Key Ideas

● Collect the trace of the interpreter

○ Easier than GPU binary / compiler instrumentation

○ No need to access real GPUs

● Design an interactive visualizer

● Design a set of questions for students to practice

Triton-Viz Workflow

● From @triton_viz.trace to visualization reports

Triton Puzzles

● Teach you how to use Triton from first principles in an interactive fashion
● Collaborated with Sasha Rush @ Cornell Tech

Triton-Puzzles/README.md at main · srush/Triton-Puzzles

https://github.com/srush/Triton-Puzzles/blob/main/README.md

Triton-Viz Visualization

Triton-Viz 2.0 Demo-1

Credits to Daniyal Khan

http://drive.google.com/file/d/1uEJo5537KJFgz_IHbmK6riN0OL98PORG/view

Triton-Viz 2.0 Demo-2

http://drive.google.com/file/d/1EhxN-sCpDfoyZfZbEj0qcZTdyU_r9MyV/view

Ongoing Work

Proton Instrumentation

● CUPTI and RocTracer are powerful but may not fully address our needs

● Why custom instrumentation?

○ Cross-Platform Support: One engine for multiple GPUs/accelerators

○ Reusable Client Interface: Simplify development across different platforms

○ Extended Metrics: Capture data unavailable through vendor tools

● Collaborating with Meta (Yuanwei Fang) and AMD (Corbin Robeck)

Fine-grained GPU Trace

Timeline

G
PU

 P
ro

ce
ss

or
s

Proposed Solution

Proton DialectProton Runtime

Proton Frontend

Triton

register

Proton Backend

CUPTI RocTracer Proton
Instrumentation

Existing Work
LLVM IRbuffer

profile data

setenv

Performance Analyzer

● Incorporate multi-level IR analysis into proton

● Associate compile time warnings with runtime performance metrics

● Provide actionable optimizations for users

● Provide problem diagnostic insights for compiler developers

Proposed Solution

Python
Source

TritonGPU
IR

GPU
Binary Proton

Profile

proton

IR Analyzer

Performance
warningstriton

Profile Analyzer

Optimization Suggestions

Summary

Put it Together

Q&A

	Profiling and Debugging GPU-accelerated AI Applications
	AI Applications
	AI System Software Stack
	AI Code Transformation Workflow
	AI Code Transformation Workflow
	AI Code Transformation Workflow
	AI Code Transformation Workflow
	Understanding Hidden Issues is Difficult
	Profiling Tools
	Profile and Trace Views

	Debugging Tools
	Outline
	DeepContext
	A Cross-Platform and Cross-Framework Profiler
	A Context-Aware Profiler
	Implementation
	Case Study
	Case Study
	Triton
	Triton
	Why Triton?

	Why Triton?
	Triton Modules
	Triton Language
	A Simple Triton Program
	Triton Profiler
	Proton (A Profiler for Triton)
	Call Path Profiling
	Proton vs Nsight Systems vs Nsight Compute
	User Interface
	Start/Stop/Finalize Profiling

	Scopes
	Metrics
	Triton Hook

	Instruction Sampling
	Instruction Sampling
	Viewer
	Case Study: Matmul
	Case Study: Matmul

	Triton Interpreter
	Debugging Triton Programs is Still Not Easy

	Triton Interpreter
	Frontend without the Interpreter
	Frontend with the Interpreter
	Case Study: Vector Addition
	Case Study: Vector Addition Without Interpreter

	Case Study: Vector Addition With Interpreter

	Triton Visualizer
	Education
	Key Ideas
	Triton-Viz Workflow
	Triton Puzzles
	Triton-Viz Visualization

	Triton-Viz 2.0 Demo-1
	Triton-Viz 2.0 Demo-2
	Ongoing Work
	Proton Instrumentation
	Fine-grained GPU Trace
	Proposed Solution
	Performance Analyzer
	Proposed Solution

	Summary
	Put it Together
	Q&A

