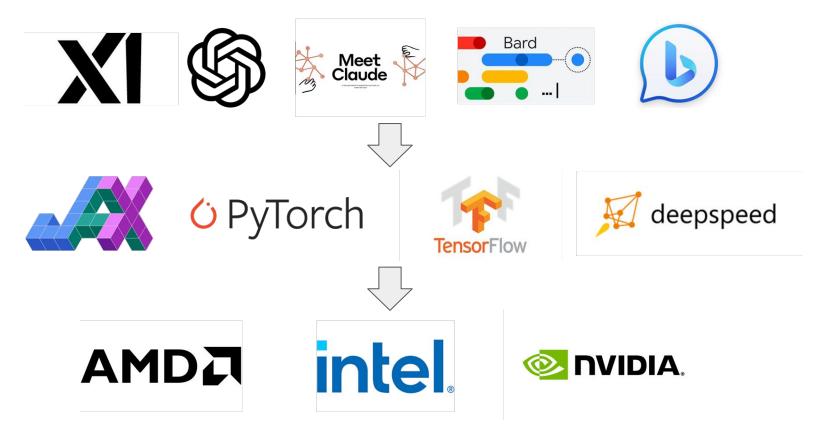
Proton: Adaptive and Lightweight Profiling for Deep Learning Workloads

Corbin Robeck, Yuanwei Fang, Keren Zhou kzhou6@gmu.edu

AI Applications

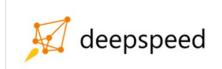
/ Grok *****Claude

AI System Software Stack



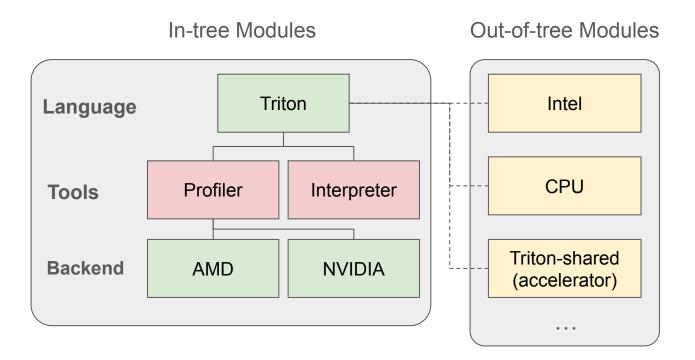
Why Triton?

intel



Triton

Triton Modules



Triton Language

- Python-like language designed for high flexibility and performance in deep
 - learning applications
 - Support tensor interface similar to PyTorch
 - Uses Python-like syntax
- Compared to CUDA/ROCm, Triton simplifies GPU programming
 - Only requiring knowledge that a kernel is divided into multiple blocks (Triton programs)
 - Most underlying details are handled by the compiler

A Simple Triton Program

z: dim0 x dim1 = x: dim0 x dim1 + y: dim0 x dim1

	e e vecAdd
Kernel decorator —	🗕 🔁 Ətriton.jit
	<pre>2 def add_kernel(x_ptr, y_ptr, z_ptr, dim0, dim1,</pre>
	3 BLOCK_DIMO: tl.constexpr, BLOCK_DIM1: tl.constexpr):
Programming model —	<pre>4 pid_x = tl.program_id(axis=0)</pre>
	5 pid_y = tl.program_id(axis=1)
	6
One officer and	<pre>7 offsets_dim0 = tl.arange(0, BLOCK_DIM0)[:,None]</pre>
Creation ops —	8 offsets_dim1 = tl.arange(0, BLOCK_DIM1)[None, :]
	9 offsets = block_start + offsets_dim0 * dim1 + offsets_dim1
	10 masks = (offsets_dim0 < dim0) & (offsets_dim1 < dim1)
	<pre>11 x = tl.load(x_ptr + offsets, mask=masks)</pre>
Memory ops —	12 y = tl.load(y_ptr + offsets, mask=masks)
	13 output = $x + y$
	14 tl.store(z_ptr + offsets, output, mask=masks)
	1^{+} (c.stole(2_pt1 + offsets, output, mask=masks)

Proton for Kernel Programmers

Proton (A **Pro**filer for Triton)

- Provide a quick, intuitive, and simple way to check kernel performance
 - Open source
 - Multiple vendor GPUs
 - Flexible metrics collection
 - Hardware metrics
 - Software metrics
- Call path profiling
- Timeline tracing*

Proton vs Nsight Systems vs Nsight Compute

Tool	Nsys	NCU	Proton
Overhead	Up to 3x	Up to 1000x	Up to 1.5x
Profile size	Large	Large	Tiny (<1MB)
Profiling targets	NVIDIA GPUs, CPUs	NVIDIA GPUs	NVIDIA and AMD GPUs
Granularity	Kernels	Kernels and instructions	Regions, kernels and instructions
GPU time Metrics GPU utilization CPU samples		A complete set of metrics from hardware counters	GPU time GPU instruction samples User-defined metrics
Triton hooks	N/A	N/A	Support

User Interface

- Lightweight source code instrumentation
 - Profile start/stop/finalize
 - \circ Scopes
 - \circ Hooks
- Command line
 - python -m proton main.py
 - o proton main.py

Start/Stop/Finalize Profiling

- Profile only interesting regions
 - o proton.start(profile_name: str) -> session_id: int
 - o proton.finalize()
- Skip some regions, but accumulate to the same profile
 - o session_id = proton.start(...)
 - o proton.deactive(session_id)
 - … # region skipped
 - o proton.activate(session_id)

Scopes

- A user-defined region with semantic information
 - Initialization
 - Forward
 - Backward
- with proton.scope(name)

Metrics

- Hardware metrics
 - Come from profiling substrates (e.g., CUPTI)
 - Kernel time
 - Instruction samples
- User-defined metrics
 - Come from users
 - Flops
 - Bytes
 - Tokens

Instruction Sampling

• For large functions, we need fine-grained insights about which

lines/IRs/instructions are expensive

- Instruction sampling is an experimental feature we're developing to support this goal
 - It's called *pc sampling* using NVIDIA's terminology

Case Study: Persistent Matmul Optimization

- We use scopes to annotate
 - Matmul shapes: matmul [M_N_K]
 - Autotuned configurations: <autotune>
 - cuBLAS/Torch/Triton kernels
- We use hooks to annotate
 - Grid dimensions
 - Number of warps
 - Number of stages

Case Study: Persistent Matmul Optimization

[Pipeliner] Enable automatic loop fusion by Mogball · Pull Request #5726 · triton-lang/triton

root@dev-0:~/code/triton\$ python python/tutorials/09-persistent-matmul.py M=32, N=32, K=32 verification naive vs: torch: ☑ cublas: ☑ persistent: ☑ TMA persistent: ☑ Tensor descriptor p M=8192, N=8192, K=512 verification naive vs: torch: ☑ cublas: ☑ persistent: ☑ TMA persistent: ☑ Tensor descriptor p 273.146 4025.362 ROOT

- nan 0.031 _ZN2at6native18elementwise_kernelILi128ELi4EZNS0_22gpu_kernel_impl_nocastIZZZNS0_23direct_copy_kernel_cudaER
- 🗕 nan 0.027 _ZN2at6native54_GLOBAL__N__a236ace4_21_DistributionNormal_cu_0c5b6e8543distribution_elementwise_grid_stride_
- 283.506 2666.310 cublas [M=8192, N=8192, K=512]

L nan 2666.310 sm90_xmma_gemm_f16f16_f16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kern

- 223.326 307.709 matmul_kernel [M=8192, N=8192, K=512]
- 259.293 265.027 matmul_kernel_descriptor_persistent [M=8192, N=8192, K=512]
- 238.500 288.133 matmul_kernel_persistent [M=8192, N=8192, K=512]
- 258.738 265.594 matmul_kernel_tma_persistent [M=8192, N=8192, K=512]
- └ 295.529 232.531 torch [M=8192, N=8192, K=512]
 - └ nan 232.531 sm90_xmma_gemm_f16f16_f16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_off_kerne

Legend (Metric: tflop16/s (inc) Min: 223.33 Max: 295.53)

- 288.31 295.53
- 273.87 288.31
- 259.43 273.87
- 244.99 259.43
- 230.55 244.99
- 223.33 230.55

Flexible Performance Analysis

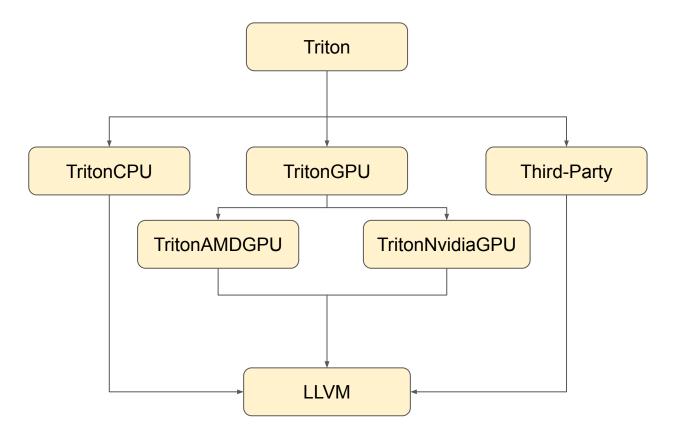
- Command line-based metrics derivation
 - proton-viewer -m tflop/s tbyte/s
 - proton-viewer -diff profile0 profile1
- Python-based profile analysis
 - Loads profiles as a Hatchet graph frame
 - Modify the graph
 - Extract hotspots
 - Merge multiple graphs
 - Derives insights at each node

Proton for Compiler Engineers

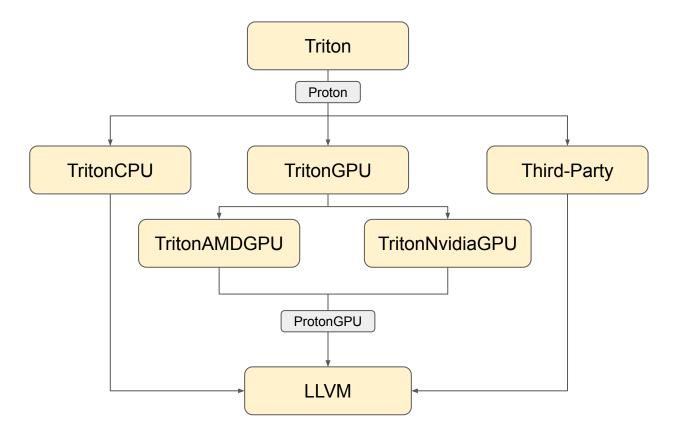
Custom Instrumentation: Beyond CUPTI & RocTracer

- Limitations of existing backends
 - CUPTI and RocTracer are powerful but may not fully address our needs
- Why custom instrumentation?
 - Cross-platform support: One engine for multiple GPUs/accelerators
 - Reusable utilities: Simplify development/optimization across kernels
 - Extended metrics: Capture data unavailable through vendor tools

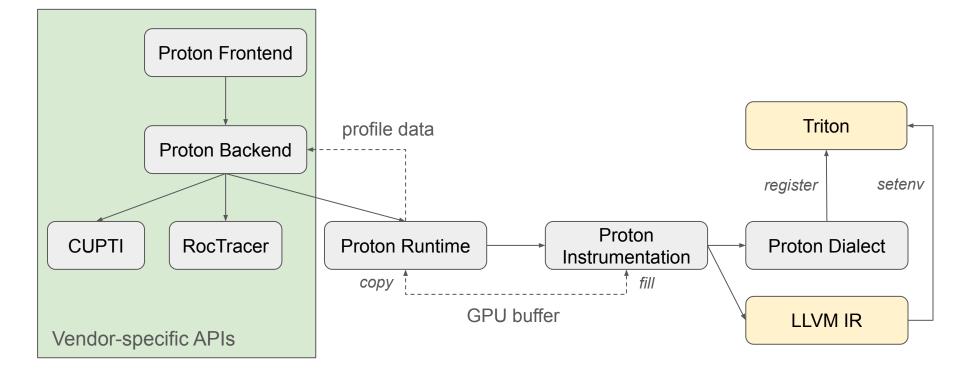
Dialect Overview



Proton Dialects



Proton Runtime



Usage

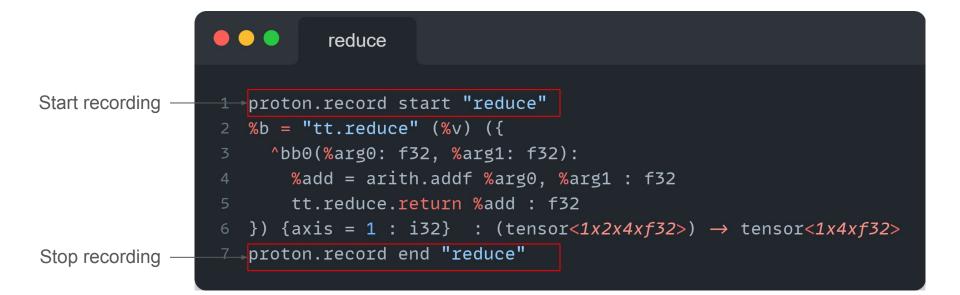
- Python API
 - Instrument Triton Python code
- Proton dialect instrumentation
 - Generic for any backend
 - Compiler engineers can specify recording start/end scopes
- ProtonGPU dialect instrumentation
 - Generated by the instrumentation backend
 - Measuring specific hardware/software metrics

Python API

- proton.start(backend="instrumentation", mode="...")
 - Patches all Triton functions with the given mode
 - Each mode specifies
 - What metrics to profile
 - Sampling modes
 - Collection granularity
 - Example: mma_cycle::[warpgroup::circular::all]
 - [warpgroup::circular::all] is optional

Proton Dialect Instrumentation

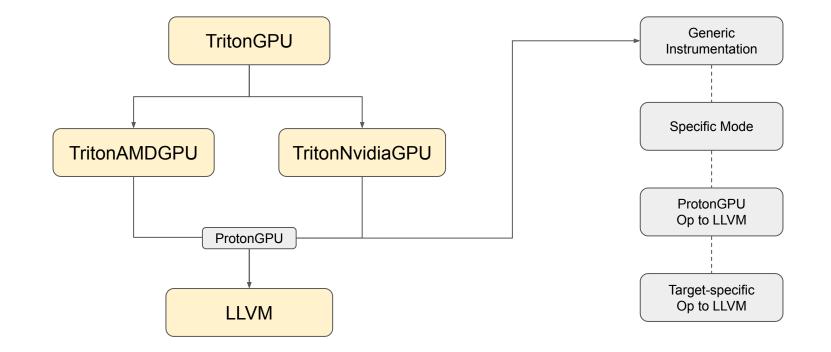
proton.record start/end "scope_name"



ProtonGPU Dialect Instrumentation

- proton_gpu.global_scratch_alloc
 - Obtain a pointer from the global profile data
- proton_gpu.init_buffer_index
 - Initial an index for recording records in the local buffer
- proton_gpu.read_counter
 - Read a performance counter value at this point
- proton_gpu.circular_store
 - Store a record in the local buffer and increase the local index
- proton_gpu.finalize
 - Copy the local buffer to the global profile data

ProtonGPU to LLVM Lowering



Use Cases

- Develop a custom "mode"
 - Fine-grained latency measurement for Triton IRs
 - Software pipelining
 - Warp specialization
- Associate profile data with compiler to build your own tools
 - Profiler-guided optimization
 - Collect and visualize values distribution of tensors

Fine-grained GPU Trace

Timeline

GPU Processors

What's the Next

- Release the warp specialization tracing mode
- Support more backends and instrumentation modes
- Support inductor-compiled kernels
- We aim to avoid reinventing the wheel
 - Reimplementing functionalities that can be easily achieved using Nsight Compute or Nsight Systems

Triton Hook

- A way to compute and associate metrics with each Triton kernel launch
 - @triton.jit(launch_metadata=metadata_fn)
- metadata_fn is a callback function that
 - Takes three input arguments
 - Grid
 - Metadata
 - warps, stages, shared
 - Args
 - Returns a dictionary containing
 - Renamed kernel name
 - Other metric names and values

Instruction Sampling

- Sample an instruction on each active GPU SM every *N* cycles
- Each instruction is associated with a *stall* reason if available
 - Why the instruction was not issued
- "Low overhead" with regard to each kernel's GPU time
- Available on NVIDIA, AMD and Intel GPUs

Viewer

- proton-viewer a call path visualization tool
- Load json data into pandas
- Render it on terminal using hatchet
 - <u>LLNL-Hatchet</u>: A flexible package for performance data analysis
 - Hatchet can also convert the format into other formats such as flamegraph
- proton-viewer -h for more information

