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Triton Language

● Python-like language designed for high flexibility and performance in deep 

learning applications

○ Support tensor interface similar to PyTorch

○ Uses Python-like syntax

● Compared to CUDA/ROCm, Triton simplifies GPU programming

○ Only requiring knowledge that a kernel is divided into multiple blocks (Triton programs)

○ Most underlying details are handled by the compiler



A Simple Triton Program

Kernel decorator

Programming model

Creation ops

Memory ops

z: dim0 x dim1 = x: dim0 x dim1 + y: dim0 x dim1



Proton for Kernel Programmers



Proton (A Profiler for Triton)

● Provide a quick, intuitive, and simple way to check kernel performance

○ Open source

○ Multiple vendor GPUs

○ Flexible metrics collection

○ Hardware metrics

○ Software metrics

● Call path profiling

● Timeline tracing*

proton



Proton vs Nsight Systems vs Nsight Compute

Tool Nsys NCU Proton

Overhead Up to 3x Up to 1000x Up to 1.5x 

Profile size Large Large Tiny (<1MB)

Profiling 
targets NVIDIA GPUs, CPUs NVIDIA GPUs NVIDIA and AMD GPUs

Granularity Kernels Kernels and instructions Regions, kernels and 
instructions

Metrics
GPU time

GPU utilization
CPU samples

A complete set of metrics 
from hardware counters

GPU time
GPU instruction samples
User-defined metrics

Triton hooks N/A N/A Support



User Interface

● Lightweight source code instrumentation

○ Profile start/stop/finalize

○ Scopes

○ Hooks

● Command line

○ python -m proton main.py

○ proton main.py



Start/Stop/Finalize Profiling

● Profile only interesting regions

○ proton.start(profile_name: str) -> session_id: int

○ proton.finalize()

● Skip some regions, but accumulate to the same profile

○ session_id = proton.start(...)

○ proton.deactive(session_id)

○ … # region skipped

○ proton.activate(session_id)



Scopes

● A user-defined region with semantic information

○ Initialization

○ Forward

○ Backward

● with proton.scope(name)



Metrics

● Hardware metrics
○ Come from profiling substrates (e.g., CUPTI)

■ Kernel time

■ Instruction samples

● User-defined metrics 
○ Come from users

■ Flops

■ Bytes

■ Tokens



Instruction Sampling

● For large functions, we need fine-grained insights about which 

lines/IRs/instructions are expensive

● Instruction sampling is an experimental feature we’re developing to support 

this goal

○ It’s called pc sampling using NVIDIA’s terminology



Case Study: Persistent Matmul Optimization

● We use scopes to annotate

○ Matmul shapes: matmul [M_N_K]

○ Autotuned configurations: <autotune>

○ cuBLAS/Torch/Triton kernels

● We use hooks to annotate

○ Grid dimensions

○ Number of warps

○ Number of stages



Case Study: Persistent Matmul Optimization

[Pipeliner] Enable automatic loop fusion by Mogball · Pull Request #5726 · triton-lang/triton

https://github.com/triton-lang/triton/pull/5726


Flexible Performance Analysis

● Command line-based metrics derivation

○ proton-viewer -m tflop/s tbyte/s

○ proton-viewer -diff profile0 profile1

● Python-based profile analysis

○ Loads profiles as a Hatchet graph frame

■ Modify the graph

■ Extract hotspots

■ Merge multiple graphs

■ Derives insights at each node



Proton for Compiler Engineers



Custom Instrumentation: Beyond CUPTI & RocTracer

● Limitations of existing backends

○ CUPTI and RocTracer are powerful but may not fully address our needs

● Why custom instrumentation?

○ Cross-platform support: One engine for multiple GPUs/accelerators

○ Reusable utilities: Simplify development/optimization across kernels

○ Extended metrics: Capture data unavailable through vendor tools



Dialect Overview

Triton

TritonCPU

TritonAMDGPU TritonNvidiaGPU

TritonGPU Third-Party

LLVM



Proton Dialects

Triton

TritonCPU

TritonAMDGPU TritonNvidiaGPU

TritonGPU Third-Party

LLVM

Proton

ProtonGPU



Proton Runtime

Proton DialectProton Runtime

Proton Frontend

Triton

register

Proton Backend

CUPTI RocTracer Proton 
Instrumentation

Vendor-specific APIs
LLVM IRGPU buffer

profile data

setenv

fillcopy



Usage
● Python API

○ Instrument Triton Python code

● Proton dialect instrumentation

○ Generic for any backend

○ Compiler engineers can specify recording start/end scopes

● ProtonGPU dialect instrumentation

○ Generated by the instrumentation backend

■ Measuring specific hardware/software metrics



Python API

● proton.start(backend=”instrumentation”, mode=”...”)

○ Patches all Triton functions with the given mode

○ Each mode specifies

■ What metrics to profile

■ Sampling modes

■ Collection granularity

○ Example: mma_cycle::[warpgroup::circular::all]

■ [warpgroup::circular::all] is optional



Proton Dialect Instrumentation

Start recording

Stop recording

proton.record start/end “scope_name”



ProtonGPU Dialect Instrumentation

● proton_gpu.global_scratch_alloc
○ Obtain a pointer from the global profile data

● proton_gpu.init_buffer_index
○ Initial an index for recording records in the local buffer

● proton_gpu.read_counter
○ Read a performance counter value at this point

● proton_gpu.circular_store
○ Store a record in the local buffer and increase the local index

● proton_gpu.finalize
○ Copy the local buffer to the global profile data



ProtonGPU to LLVM Lowering

TritonAMDGPU TritonNvidiaGPU

TritonGPU

LLVM

ProtonGPU

Generic 
Instrumentation

Specific Mode 

ProtonGPU 
Op to LLVM

Target-specific
Op to LLVM



Use Cases
● Develop a custom “mode”

○ Fine-grained latency measurement for Triton IRs

■ Software pipelining

■ Warp specialization

● Associate profile data with compiler to build your own tools

○ Profiler-guided optimization

○ Collect and visualize values distribution of tensors



Fine-grained GPU Trace
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What’s the Next

● Release the warp specialization tracing mode

● Support more backends and instrumentation modes

● Support inductor-compiled kernels

● We aim to avoid reinventing the wheel

○ Reimplementing functionalities that can be easily achieved using Nsight Compute or Nsight 

Systems



Triton Hook

● A way to compute and associate metrics with each Triton kernel launch
○ @triton.jit(launch_metadata=metadata_fn)

● metadata_fn is a callback function that
○ Takes three input arguments

■ Grid
■ Metadata

● warps, stages, shared
■ Args

○ Returns a dictionary containing
■ Renamed kernel name
■ Other metric names and values



Instruction Sampling

● Sample an instruction on each active GPU SM every N cycles

● Each instruction is associated with a stall reason if available

○ Why the instruction was not issued

● “Low overhead” with regard to each kernel’s GPU time

● Available on NVIDIA, AMD and Intel GPUs



Viewer

● proton-viewer a call path visualization tool

● Load json data into pandas

● Render it on terminal using hatchet

○ LLNL-Hatchet: A flexible package for performance data analysis

○ Hatchet can also convert the format into other formats such as flamegraph

● proton-viewer -h  for more information

https://llnl-hatchet.readthedocs.io/en/latest/

