GVProf: A Value Profiler for GPU-based Clusters

Keren Zhou1, Yueming Hao2, John Mellor-Crummey1, Xiaozhu Meng1, and Xu Liu2

1Rice University
2North Carolina State University
Value Profiling

- Values and instructions have *invariant*, *predictable*, or *approximate* behavior not eliminated at compile time.
- Value profiling finds redundant value accesses and attributes them to source code to pinpoint opportunities for optimizations such as constant propagation, code specialization, and function inlining.
A Motivating Example

• Rodinia/pathfinder

```c
void dynproc_kernel(int iteration, int *result, int *wall, ...) {
    for (int i : iteration) {
        result[tx] = shortest + wall[index];
    }
}
```

• The values in the array `wall` are largely redundant
 • Between [1, 10]
 • Demoting `wall` to `int8_t`
 • 1.14x speedup
GVProf

- Past research uses simulators to study value redundancy in GPU programs
 - High overhead
 - Source code recompilation
 - Limited to small benchmarks

- GVProf uses binary instrumentation to analyze GPU-accelerated applications with acceptable overhead and pinpoints value redundancies with full calling contexts
Outline

• Design Overview
• Methodology
• Measurement
• Analysis
• Case Studies
• Contributions and Work in Progress
Design Overview

• Online Profiler
 • CPU
 • Application threads for instrumenting kernels, managing buffers, and recording program calling context and memory objects
 • An analysis thread for on-the-fly analysis of redundancy metrics
 • GPU
 • Callbacks for instrumented GPU instructions

• Offline Analyzer
 • Association of redundancy metrics and program structure
Workflow

- GVProf uses NVIDIA’s Sanitizer API to intercept binary load, kernel launch, and memory allocation

- Create a background analysis thread to identify value redundancies
- Record calling context of memory allocations
- Create snapshots of memory allocations

- Read CFGs of GPU functions
- Map each function’s address to a file offset in a binary
- Add instrumentation callbacks

- Transfer GPU access records to the CPU
- Enqueue the records for the background analysis thread
Outline

• Design Overview
• Methodology
• Measurement
• Analysis
• Case Studies
• Contributions and Work in Progress
Spatial Redundancy

• Spatial load redundancy
 • A memory load L_2 is redundant iff it loads a value v from address A_2, and another memory load L_1 loads v from address A_1, and A_2 and A_1 are in the memory range of a data object allocated by a GPU memory allocation.

• Spatial store redundancy
 • A memory store S_2 is redundant iff it stores a value v to address A_2, and another memory store S_1 stores v to address A_1, and A_2 and A_1 are in the memory range of a data object allocated by a GPU memory allocation.
Temporal Redundancy

• Temporal load redundancy
 • A memory load L2 is redundant *iff* it loads a value v from address A, and the previous memory load L1 from A also loaded v

• Temporal store redundancy
 • A memory store S2 is redundant *iff* it stores a value v to address A, and the previous memory store S1 also stored v to A
Approximate Redundancy

• For floating point values, we adjust the length of the mantissa to compute approximate redundancy
 • \(value = sign \times 2^{exponent} \times \text{mantissa} \)

• Example
 • \(85.0000125 = 2^6 \times 010101000000000000010b \)
 • \(85.0 = 2^6 \times 010101000000000000000b \)
 • \(85.0000125 \approx 85.0 \) only consider the leading 21 bits of mantissa
Outline

• Design Overview
• Methodology
• Measurement
• Analysis
• Case Studies
• Contributions and Work in Progress
Processing Pipeline

- Overlap kernel execution and value analysis
 - GPU and application threads communicate via a GPU queue
 - Application threads and the analysis thread communicate via a CPU queue
Hierarchical Sampling

- For applications that employ iterative and data parallel models, behaviors across different GPU kernel invocations and blocks are similar

- Kernel sampling
 - Monitor a subset of kernel invocations with the same invocation context

- Block sampling
 - Monitor a subset of a kernel invocation’s thread blocks
GPU Binary Instrumentation and CPU-GPU Communication

• At binary load time, add instrumentation at memory access, thread block enter, and thread block exit.

• When instrumentation executes:
 • Each warp reserves a slot for a record in the queue with atomicAdd.
 • Each active thread in a warp writes its entry in the record.
 • Each warp pushes the record into the queue.

• The GPU signals the CPU to drain the queue:
 • When the queue is full.
 • When the GPU kernel is complete.
Outline

• Design Overview
• Methodology
• Measurement
• Analysis
• Case Studies
• Contributions and Work in Progress
Spatial Redundancy Metrics

- $SR_{k,o,v} = \frac{SC_{k,o,v}}{N_{k,o}}$
 - The spatial redundancy rate SR of a data object o within kernel k with value v
- $SC_{k,o,v}$
 - Spatial redundancy count of a data object o within kernel k with value v
- $N_{k,o}$
 - The total number of memory accesses of a data object o within kernel k

Insights
- 100% single value
 - Load/Store constant values
- High ratio of single value
 - Common computation

- How do we identify data objects using memory addresses?
- How do we compare and interpret values?
Identify Data Objects

• The analysis thread and GPU memory allocations are asynchronous
 • Record an *allocation snapshot* after each memory allocation and free
 • Look up the closest allocation snapshot

Operations

1->Allocate(a) Analyze(4) Analyze(6)
2->Allocate(b) 5->Free(a)
3->Allocate(c) 6->Kernel(b, c)
4->Kernel(a, b, c) 7->Free(b)
Identify Memory Access Type

- The raw value obtained for each GPU memory access is a sequence of binary bits, with no type information
 - Unit size
 - The length of each element accessed
 - Vector size
 - The number of elements accessed
 - Data type
 - Float/Integer

- Use backward slicing to identify memory access types

- The algorithm and a concrete example are described in the paper
Temporal Redundancy Metrics

- \(TR_{k,i,v} = \frac{TC_{k,i,v}}{N_{k,i}} \)
 - The temporal redundancy rate \(TR \) at instruction \(i \) within kernel \(k \) with value \(v \)
 - \(TC_{k,i,v} \)
 - Temporal redundancy count at instruction \(i \) within kernel \(k \) with value \(v \)
 - \(N_{k,i} \)
 - The total number of memory accesses at instruction \(i \) within kernel \(k \)

- Insights
 - High redundancy in a loop
 - Value not in a register
 - High redundancy in device function
 - Failed to inline function

- How do we keep track of memory access records of each thread?
Analysis of Temporal Redundancy

- The analysis thread identifies temporal redundancies within each GPU thread by scanning its access records and keeping only information about redundancies.
Outline

• Design Overview
• Methodology
• Measurement
• Analysis
• Case Studies
• Contributions and Work in Progress
Case Studies

• **Platform**
 - Summit supercomputer
 - Up to 64 NVIDIA Volta V100 GPUs

• **Benchmark**
 - **Rodinia**
 - A collection of parallel programs
 - **Darknet/cuBLAS**
 - An open-source deep learning framework
 - **Quicksilver**
 - A DOE proxy application for solving a dynamic Monte Carlo particle transport problem
 - **LAMMPS**
 - A molecular dynamics code for large-scale materials modeling
Evaluation of GVProf

• Measurement overhead
 • Up to 1000x without sampling
 • 7.5x in average with block sampling

• Sampling accuracy
 • 0.7% error in average with block sampling

• Optimizations
 • GVProf does not have false positives
 • But not all value redundancies can or should be eliminated
 • Achieved speedups from 1.02x to 2.42x
• 50% spatial load redundancy on shared memory with zeros
 • The first layer of YOLOv3-tiny has channel size 16 so that it only requires a 128x16 tile on shared memory
 • cuBLAS 128x32 matrix multiplication kernel uses a 128x32 tile on shared memory
 • Half of the shared memory is filled with zeros

• Achieved 1.60x speedup by employing a fast implementation for tall-and-thin matrices
20.9% temporal load redundancy in `qs_assert` to check boundary conditions

- `qs_assert` is enclosed in a non-inlined device function invoked in a loop and checks loop invariant values
- Achieved 1.10x speedup by hoisting the `qs_assert` out of the device function

30.2% temporal load redundancy in the epilogue of `getReactionCrossSection` and `macroscopicCrossSection`

- The two non-inlined device functions are called in a loop, introducing redundant local memory store and load operations to spill and restore unchanged values
- Achieved 1.10x speedup by inlining these two functions into their caller
• 52.3% spatial redundant stores with zeros in a deep calling context
 • Kokkos resizes an array by allocating a new piece of memory and initializing it to zero
 • Achieved 1.47x speedup by increasing the array growth factor to reduce the calls to Kokkos::resize()
Outline

• Design Overview
• Methodology
• Measurement
• Analysis
• Case Studies
• Contributions and Work in Progress
Contributions and Work in Progress

• GVProf highlights
 • identifies temporal and spatial value redundancies for both memory loads and stores;
 • provides detailed information to guide optimization, including calling contexts, data objects, and source code attribution;
 • employs various optimizations to reduce its overhead

• Work in progress
 • Track value changes regarding the whole program execution
 • memset/memcpy
 • Inter kernels
 • Analyze value patterns for each data object
 • Type misuse
 • Immutable values