
A Tool for Performance Analysis 
of GPU-Accelerated Applications

Keren Zhou, John Mellor-Crummey

Department of Computer Science

Rice University 



Problem

• OpenMP Target, Kokkos, and RAJA generate 
sophisticated GPU code with many small 
procedures 
• Complex calling contexts on both CPU and GPU

• Existing performance tools are ill-suited for 
analyzing such complex kernels because they lack a 
comprehensive profile view

• At best existing tools only attribute runtime cost to 
a flat profile view of functions executed on GPUs
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Key contribution

• A novel measurement system builds a complete 
profile view to show performance metrics for GPU-
accelerated code for multiple CPU threads
• Construct calling context trees for GPU programs by 

analyzing control flow and call graphs

• Employ wait-free data structures to attribute GPU 
samples back to heterogenous calling contexts

• Apportion GPU samples to calling contexts using 
instruction samples of GPU function calls
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Start from a simple application
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Two OpenMP threads launch vecAdd kernels concurrently

#omp parallel num_threads(2)
cuLaunchKernel(vecAdd, ...)

int __noinline__ add(int a, int b) {
return a + b;

}

void vecAdd(int *l, int *r, int *p, size_t iter1, size_t iter2) {
size_t idx = blockDim.x * blockIdx.x + threadIdx.x;
for (size_t i = 0; i < iter1; ++i) {
p[idx] = add(l[idx], r[idx]);

}
for (size_t i = 0; i < iter2; ++i) {
p[idx] = add(l[idx], r[idx]);

}
}
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nvvp lacks of calling context

A tool should attribute latencies back to 
call sites at line 12 and line 15
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nvvp lacks of control flow analysis

A tool should attribute performance to loops
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A complete profile view
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Step 1: Build calling context tree 
on CPU
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• Use HPCToolkit’s CCT-tree

#omp parallel num_threads(2)
cuLaunchKernel(vecAdd, ...)

int __noinline__ add(int a, int b) {
return a + b;

}

void vecAdd(int *l, int *r, int *p, size_t
iter1, size_t iter2) {

size_t idx = blockDim.x * blockIdx.x + 
threadIdx.x;

for (size_t i = 0; i < iter1; ++i) {
p[idx] = add(l[idx], r[idx]);

}
for (size_t i = 0; i < iter2; ++i) {

p[idx] = add(l[idx], r[idx]);
}

}
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#pragma omp parallel

t0 t1

spawn

cuLaunchKernel cuLaunchKernel



Step 2: Apply static control flow 
analysis
• Identify loops
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#omp parallel num_threads(2)
cuLaunchKernel(vecAdd, ...)

int __noinline__ add(int a, int b) {
return a + b;

}

void vecAdd(int *l, int *r, int *p, size_t
iter1, size_t iter2) {

size_t idx = blockDim.x * blockIdx.x + 
threadIdx.x;

for (size_t i = 0; i < iter1; ++i) {
p[idx] = add(l[idx], r[idx]);

}
for (size_t i = 0; i < iter2; ++i) {

p[idx] = add(l[idx], r[idx]);
}

}
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Step 3: Collect GPU samples

• Two categories of threads
• Worker threads

• Launch kernels, move and allocate data, synchronize GPU calls

• CUPTI thread
• Collect GPU samples

• Interaction
• Notification: A worker thread T creates a notification record 

when it launches a kernel and tags the kernel with a 
correlation ID C, notifying the CUPTI thread that C belongs to 
T

• Sample attribution: The CUPTI thread collects samples 
associated with C and communicates sample attribution 
records back to thread T
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Sample attribution as an example

• The CUPTI thread adds samples to sample 
attribution queues using a push (CAS) operation.
Each worker thread steals (XCHG) the head of its 
sample queue with NULL to steal all its records

• Wait-free progress is guaranteed because a CUPTI 
thread’s CAS fails at most once when tries to add 
samples

• Memory reclamation occurs when a worker 
thread’s samples have been attributed to its calling 
context tree. The worker puts records into a free 
queue which can be swapped by the CUPTI thread
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Step 4: Attribute GPU samples

• Attribute samples to function calls
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#pragma omp parallel
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#omp parallel num_threads(2)
cuLaunchKernel(vecAdd, ...)

int __noinline__ add(int a, int b) {
return a + b;

}

void vecAdd(int *l, int *r, int *p, size_t
iter1, size_t iter2) {

size_t idx = blockDim.x * blockIdx.x + 
threadIdx.x;

for (size_t i = 0; i < iter1; ++i) {
p[idx] = add(l[idx], r[idx]);

}
for (size_t i = 0; i < iter2; ++i) {

p[idx] = add(l[idx], r[idx]);
}

}
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Approximate a calling context tree

• Problem
• High cost to unwind call stacks on GPU

• Solution
• Construct a call graph by parsing call instructions and 

linking corresponding procedures

• Create “supernode” for recursive procedures

• Split the call graph into a calling context tree

• Apportion samples of procedures that have multiple call 
sites
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Apportion samples of a procedure 
based on its call sites
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RAJA

• Template-based programming model based on C++

• Loop template can map a C++ lambda function for 
an iteration onto GPUs using CUDA

• RAJA performance suite
• Explores performance of 30 loop-based computational 

kernels

• https://github.com/LLNL/RAJAPerf
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Profile rajaperf
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Status and ongoing work

• We extended HPCToolkit to build a complete profile 
view for analyzing the runtime characteristics of 
GPU-accelerated applications

• Work in progress
• Collect all the performance information, including kernel 

performance, data movement, compute utilization, and 
PC sampling information in a single phase

• Study MPI-based GPU-accelerated applications

3/19/2019 17



GPU Hotspot

CPU Calling Context

GPU Calling Context
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Actual Kernel Code


